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Properties of color-Coulomb string tension
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We study the properties of the color-Coulomb string tension obtained from the instantaneous part of
gluon propagators in Coulomb gauge using quenched SU�3� lattice simulation. In the confinement phase,
the dependence of the color-Coulomb string tension on the QCD coupling constant is smaller than that of
the Wilson loop string tension. On the other hand, in the deconfinement phase, the color-Coulomb string
tension does not vanish even for T=Tc � 1� 5, the temperature dependence of which is comparable with
the magnetic scaling, dominating the high temperature QCD. Thus, the color-Coulomb string tension is
not an order parameter of quark-gluon plasma phase transition.
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I. INTRODUCTION

Understanding color confinement in quantum chromo-
dynamics (QCD) is one of the most challenging problems
in quantum field theory, and also provides essential knowl-
edge for low temperature hadron physics. There are many
approaches to understand color confinement dynamics: the
dual superconductor scenario, the center vortex model, the
infrared behavior of gluon propagators, etc. have been
widely studied and a large amount of information on color
confinement has been accumulated. See reviews in
Refs. [1–3]. In those scenarios, topological objects and
gauge-dependent quantities, bringing out the properties
of QCD vacuum, may play an important role. A key issue
is the choice of gauge in which the confinement scenario is
realized.

Recently, there has been considerable interest in the
Coulomb gauge color confinement scenario. This scenario
was originally discussed by Gribov [4], and, in recent
years, Zwanziger has advocated the importance of a
color-Coulomb potential in Coulomb gauge for color con-
finement [5]. He and his collaborators showed that, in
Coulomb gauge, the time-time component of gluon propa-
gators, g2D00, including an instantaneous color-Coulomb
potential plus a noninstantaneous vacuum polarization, is
invariant under renormalization [5–7]. It has been found by
perturbative analysis [7] that the instantaneous part in
Coulomb gauge QCD causes antiscreening, while the vac-
uum polarization part causes screening. Hence, one ex-
pects that the instantaneous color-Coulomb potential
represents a linearly rising behavior for large quark sepa-
rations. Moreover, Zwanziger pointed out that there is an
inequality [8], Vphys�R� � VCoul�R�, where Vphys�R� means
a physical heavy-quark-antiquark potential and VCoul�R�
the Coulomb heavy-quark potential corresponding to the
instantaneous part of D00. This inequality indicates that if
the physical heavy-quark potential is confining, then the
Coulomb heavy-quark potential is also confining. See
Ref. [9] for a review.
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In order to verify the Coulomb gauge color confinement
scenario, one needs a nonperturbative technique to de-
scribe the low-energy color confinement. Therefore, non-
perturbative verifications have been tried in lattice gauge
simulations. In the SU�2� lattice numerical simulation
carried out by Cucchieri and Zwanziger [10], it was found
that g2D00� ~k� is strongly enhanced at ~k � 0. In SU�2� and
SU�3� lattice simulations [11–13], furthermore, it was
reported that the Coulomb heavy-quark potential grows
linearly at large quark separations in the confinement
phase.

On the lattice, it is essential to study the magnitude and
the scaling for the string tension, which is a characteristic
quantity for confinement physics. Numerical lattice calcu-
lations [11–13] indicate that the color-Coulomb string
tension has a value 2–3 times larger in comparison with
the case of a gauge invariant Wilson loop, as expected by
Vphys�R� � VCoul�R�. In addition, the SU�2� lattice numeri-
cal data in Ref. [12] show the possibility that an asymptotic
scaling violation for the color-Coulomb string tension may
be less than the usual Wilson loop string tension.
Accordingly, the dependence of the color-Coulomb string
tension on a gauge coupling or a lattice cutoff ought to be
extensively investigated in SU�3� lattice gauge theory.

The lattice simulations mentioned above have shown the
linearity of the instantaneous color-Coulomb potential at
large distances in the confinement regions. At the same
time, the lattice calculations at finite temperature in the
deconfinement phase indicate that the Coulomb string
tension remains after the quark-gluon plasma (QGP) phase
transition [12,13]. One possible explanation is that the
color-Coulomb potential, determined by the spatial-like
and time (temperature) independent Faddeev-Popov (FP)
operator, is not sensitive to the system temperature. In
addition, we note that the potential obtained from a spatial
Wilson loop above Tc behaves as a linearly rising function
[14–21]. Both the color-Coulomb and the spatial Wilson
potentials have a common feature that they are defined by
-1 © 2006 The American Physical Society
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spatial variables. However, the lattice simulations with
higher temperature than the previous calculations [12,13]
are indispensable. Nevertheless, the noninstantaneous re-
tarded part with the vacuum polarization still gives a color-
screened potential [13,22,23].

In Coulomb gauge QCD there are no unphysical degrees
of freedom for gauge fields; namely, Coulomb gauge is a
physical gauge. In contrast, Lorentz covariant gauges gen-
erate a negative spectral function due to the indefinite
metric of Fock space. This is very convenient for discus-
sing a physical hadron, and a lot of attempts have been
made to construct models based on the Coulomb gauge
Hamiltonian to describe color confinement [24–28] and
hadrons [29,30].

In this paper, we will perform more extensive lattice
QCD studies on the Coulomb gauge confinement scenario
comparing with the previous calculation [13]. In the con-
finement phase, we investigate the scaling behavior of the
color-Coulomb string tension by varying a lattice cutoff or
a coupling constant � � 6=g2. In the deconfinement
phase, we discuss the relation between the thermal color-
Coulomb string tensions, which are calculated at high
temperatures, T=Tc � 1:5� 5:0, and the magnetic scaling
that is believed to dominate the high temperature QCD. In
Sec. II, we briefly review the partition function in Coulomb
gauge and describe the instantaneous color-Coulomb po-
tential and the noninstantaneous vacuum polarization part.
In Sec. III, we give the definition of the partial-length
Polyakov line (PPL) correlator [11,12] to evaluate the
instantaneous part. Section IV is devoted to showing the
numerical results. Section V gives conclusions.
II. INSTANTANEOUS COLOR-COULOMB
POTENTIAL

The construction of the partition function in Coulomb
gauge through the Faddeev-Popov technique and the deri-
vation of the instantaneous color-Coulomb potential were
done in Ref. [6]. The Hamiltonian of QCD in Coulomb
gauge can be written as

H � 1
2

R
d3x�Etr 2

i � ~x� � B
2
i � ~x��

� 1
2

R
d3xd3y��� ~x�V � ~x; ~y��� ~y��; (1)

where Etri , Bi, and � are the transverse electric field, the
magnetic field, and the color charge density, respectively.
The function V in the second term is made by the FP
operator in the spatial direction, M � � ~D ~@ �
�� ~@2 � g ~A� ~@�,

V � ~x; ~y� �
Z
d3z

�
1

M� ~x; ~z�
�� ~@2

� ~z��
1

M�~z; ~y�

�
: (2)

From the partition function with the Hamiltonian
Eq. (1), one can evaluate the time-time gluon propagator
composed of the following two parts:
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g2hA0�x�A0�y�i � g2D00�x� y� � V�x� y� � P�x� y�;

(3)

where

V�x� y� � g2hV � ~x; ~y�i��x4 � y4�: (4)

Equation (4) corresponds to the instantaneous color-
Coulomb potential at equal time and causes antiscreening;
namely, it is the most important quantity in the Coulomb
gauge confinement scenario, and is constructed by the
spatial FP matrix. Therefore, if the potential V is a linearly
rising potential for large quark separations, then color
confinement is attributed to an enhancement of the low-
lying mode of FP eigenvalues [4,5]. Note that Eq. (4) in the
case of quantum electrodynamics (QED) as a nonconfining
theory is identified as a Coulomb propagator h�1=@2

i i or a
Coulomb potential 1=r. Simultaneously, the quantity P in
Eq. (3) is a vacuum polarization term,

P�x� y� � �g2

�Z
V � ~x; ~z���~z; x4�d3z

�
Z

V � ~y; ~z0���~z0; y4�d3z0
�
; (5)

which causes a color-screening effect owing to the minus
sign of this equation, and produces the reduction of a color-
confining force and a quark-pair creation from vacuum
when dynamical quarks exist. Moreover, this perturbative
argument is also satisfied at one-loop order [5].
III. PARTIAL-LENGTH POLYAKOV LINE

In this section, we give the definition of a static heavy-
quark-antiquark potential in the color-singlet channel as a
function of distance, R, and summarize how to fix the
gauge on the lattice.

We introduce a PPL defined as [11,12]

L� ~x; nt� �
Ynt
ns�1

U0� ~x; ns�; nt � 1; 2; . . . ; Lt: (6)

Here U0� ~x; t� � exp�iagA0� ~x; t�� is an SU�3� link variable
in the temporal direction and a, g, A0� ~x; t�, and Lt represent
the lattice cutoff, the gauge coupling, the time component
of the gauge potential, and the temporal-lattice size. A PPL
correlator in the color-singlet channel is given by

G�R; nt� �
1
3hTr	L�R; nt�L

y�0; nt�
i; (7)

where R stands for j ~xj. From Eq. (7), one evaluates the
color-singlet potential on the lattice,

V�R; nt� � log
�

G�R; nt�
G�R; nt � 1�

�
: (8)

In the case of nt � 0, we define

V�R; 0� � � log	G�R; 1�
: (9)
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FIG. 1. An example of the R dependence of the instantaneous
color-Coulomb potential (in dimensionless lattice units) at � �
6:0 (a� 0:1 fm) on a 183 � 32 lattice in the confinement phase.
This result was obtained in the previous work [13]. The solid and
dashed curves stand for the fitted result for the potential V�R; 0�
and the Wilson loop potential reported in Ref. [47], respectively.
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Greensite et al. argued that this function V�R; 0� in
Coulomb gauge corresponds to an instantaneous color-
Coulomb potential VCoul�R� [11,12]. The potential
V�R; nt� in the limit nt ! 1 is expected to correspond to
a physical potential, Vphys�R�, usually calculated from the
Wilson loops in the same limit. Both potentials are known
to satisfy Zwanziger’s inequality, Vphys�R� � VCoul�R� [8].

Since the color-decomposed potentials defined by the
PPL correlator, such as Eq. (7), do not have a gauge
invariant form, we must fix the gauge. One can realize
the Coulomb gauge on the lattice to maximize the mea-
surement

X
~x

X3

i�1

Re TrUyi � ~x; t�; (10)

by repeating the gauge rotations:

Ui� ~x; t� ! U!
i � ~x; t� � !y� ~x; t�Ui� ~x; t�!� ~x� î; t�; (11)

where ! 2 SU�3� [31] is a gauge rotation matrix and
Ui� ~x; t� are link variables for the spatial direction. Thus,
each lattice configuration thermalized after the
Monte Carlo quantization can be gauge fixed iteratively
[32].
IV. RESULTS AND DISCUSSIONS

We carried out SU�3� lattice gauge simulations in the
quenched approximation to calculate the instantaneous
color-Coulomb q �q potential in the confinement and decon-
finement phases. The lattice gauge configurations were
generated by the standard heat-bath Monte Carlo technique
with a simple plaquette Wilson gauge action.

A. Linearity of the instantaneous color-Coulomb
potential

An example of the variation of the instantaneous color-
Coulomb potential V�R; 0� with distances is shown in
Fig. 1, which demonstrates that the potential V�R; 0� be-
haves as a linearly rising function with increasing distance
R and can be described in terms of the Coulomb term plus a
linear term with a nonzero string tension,

V�R; 0� � c0 � KR� e=R; (12)

where e is fixed to��=12 for a two-parameter fit, andK �
�ca2 is the color-Coulomb string tension. Thus we find
that the instantaneous potential V�R; 0� is a confining
potential. In contrast, the vacuum polarization (retarded)
part causes color screening, which weakens the confining
force as reported in Refs. [11,13]. Consequently, the color-
Coulomb potential in the limit nt ! 1 is expected to
approach the Wilson loop potential. The slope of the
potential V�R; nt� with finite nt decreases as displayed in
Fig. 1. Note that the numerical result in Fig. 1 was obtained
in the previous work [13], and, in the present study, we will
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not enter into details on the vacuum polarization part any
further.

B. Color-Coulomb string tension

The string tension is a characteristic quantity in discus-
sing confinement physics and thus one should investigate
the scaling behavior of the color-Coulomb string tension������
�c
p

�
����
K
p

a�1, obtained by the lattice simulation with a
finite cutoff. Here we can introduce a two-loop asymptotic
scaling of QCD with the mass parameter � and lattice
cutoff a as

a� � exp
�
�

1

2b0g2

�
�b0g2���b1=2b2

0� � f�g�; (13)

where b0 and b1 are universal first two coefficients of the �
function. Since the quantity

������
�c
p

is expected to be propor-
tional to the scale of QCD � in asymptotic regions, it
makes sense to consider the following relation:

������
�c
p

�
�

����
K
p

f�g�
; (14)

which would be reduced to a constant in the continuum
(weak coupling) limit.

In the present study, we carried out calculations at � �
6:1–6:4 on a 184 lattice and used 300 gauge configurations
measured every 100 sweeps after sufficient thermalization.
The � � 6=g2 dependence of the color-Coulomb string
tensions is plotted in Fig. 2, in which we additionally
employed the data at � � 5:85–6:00 reported in the pre-
vious calculation [13]. For the two-parameter fitting by
Eq. (12), we employed the data over R� 0:2 fm up to
R� 0:5 fm for � � 6:1–6:4, which are R� 3–6 in lattice
-3
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FIG. 3. The dependence of the instantaneous color-Coulomb
potential on the temperature in the deconfinement phase. The
dashed curves stand for the fitted results.
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FIG. 4. The temperature dependence of the color-Coulomb
string tension in units of Tc in the deconfinement phase. The
color-Coulomb string tension is proportional to T. Here we use
Eq. (12) as a fitting function.
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FIG. 2. The dependence of the color-Coulomb string tensions
on � � 6=g2. The triangle symbols with error bars stand for the
color-Coulomb string tension in the deconfinement phase. The
Wilson loop string tensions, represented by the diamond sym-
bols, are also plotted for comparison taken from Table III in
Ref. [34].
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units, restricted due to the periodic boundary condition.
Although the results of the high � regions have large errors
in our calculations [33], the variations of the color-
Coulomb string tensions as � varies seem to be smaller
than the case of the Wilson loop string tension (

�������
�w
p

) [34],
included for comparison. The relative fluctuation (the ratio
of the minimum and maximum) of those data is within
�6�2�%. Such tendency was also observed in the SU�2�
lattice simulations [12].

Moreover, in the range of � used here, the value of
������
�c
p

still remains approximately 2 times as large as that of
�������
�w
p

,
and monotonically varies with �. This tendency seems to
be unchanged in the continuum limit. However, the larger
lattice simulation at higher � is required to realize the
asymptotic scaling.

C. Behavior of the instantaneous color-Coulomb
potential at T � 0

In the confinement phase, as seen in the previous sec-
tion, the instantaneous color-Coulomb part gives a confin-
ing potential. However, it is reported in Refs. [12,13] that
the linearity of V�R; 0� is not lost even after the QGP phase
transition. Therefore, in the present work, we carried out
lattice simulations at T=Tc � 1:5–5:0 on the fixed lattice
size 243 � 6. Here, the critical temperature of the QGP
phase transition Tc is approximately 256 MeV for Nt � 6
[35]. We fixed the lattice temperature T � 1=Nta to vary
the lattice cutoff a (�) [36] and 300 gauge configurations
measured every 100 sweeps were used. In Fig. 3, we show
the temperature dependence of the thermal color-Coulomb
potential with a nonvanishing string tension. The potentials
V�R; 0� in the deconfinement phase still behave like a
linear-confining potential, and, furthermore, the slope and
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magnitude of those potentials become larger. It is found in
Fig. 4 that the main temperature dependence of the thermal
color-Coulomb string tension is apparently given by the
linear relation, ������

�c
p

� T; (15)

being directly proportional to the temperature.

D. Spatial Wilson loop potential and magnetic scaling

In order to interpret the confining phenomenon caused
by the instantaneous color-Coulomb part in the deconfine-
ment phase, it may be instructive to review studies on the
thermal behavior of the spatial Wilson loop above Tc [14–
21]. The spatial Wilson loop,W�R; S�, is constructed by the
only spatial links (or spatial gluon fields), where R and S
-4



TABLE I. The status on the fitting analyses of the color-
Coulomb string tension at T � 0. The second andlast rows stand
for the fitting range in units of T=Tc and the value of the reduced
chi-square, respectively.

Scaling Range (T=Tc) c Tc=� �2=ndf

Magnetic 2.0–5.0 0.710(13) 4.05(20) 4.45
2.0–4.0 0.735(18) 4.41(29) 1.47
1.5–4.0 0.770(12) 5.05(20) 1.99

Electric 2.0–5.0 0.806(07) 1.36(3) 6.30
2.0–4.0 0.829(10) 1.44(4) 1.25
1.5–4.0 0.869(07) 1.66(3) 5.52
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are spatial extents on a lattice. If the loop W�R; S� follows
area law as a function of S, then the spatial Wilson loop
potential Vs�R� would be given by

Vs�R� � lim
S!1

ln
W�R; S�

W�R; S� 1�
: (16)

The potential Vs on the confined T � 0 (symmetric hyper-
cube) lattices can be identical to the usual Wilson loop
potential. However, in the deconfinement phase, it is
known that the potential Vs is a linearly rising potential
at large distances rather than a color-screened potential.
Consequently, the nonvanishing spatial string tension,������
�s
p

, exists even in the deconfinement phase.
In a series of studies on the thermal spatial Wilson loop,

the spatial string tension
������
�s
p

at high temperature has been
discussed in terms of the magnetic scaling. According to
perturbation theory of thermal QCD (TQCD) [37], the
temporal gluon propagator yields the electric mass

me � g�T�T; (17)

usually referred to as a color-Debye screening mass, while
the spatial gluon propagator also yields the magnetic mass

mm � g2�T�T; (18)

which must be introduced as the cutoff factor to solve an
infrared divergence that appears in TQCD perturbation.
Thus, the magnetic scaling somewhat has a nonperturba-
tive origin and is closely relevant to longer range physics
than the electric scale.

The infrared sensitivity in TQCD is known to survive in
the high temperature limit (T ! 1) through the argument
of 3-dimensional reduction [38,39]. This approach enables
us to obtain the effective theory that is defined by integrat-
ing out a nondynamical heavy mode in the high tempera-
ture limit; this theory proves that the long-range properties
of TQCD are dominated by the magnetic scaling.

E. Thermal color-Coulomb string tension

To obtain the thermal color-Coulomb string tension�������������
�c�T�

p
for the deconfining phase, we employed an ansatz

of the Coulomb plus linear terms. The actual fitting analy-
ses by the use of the same function as Eq. (12) give
�2=ndf & 1 for the data of the fixed range of R � 3–7
for T=Tc � 1:50–5:00. The thermal color-Coulomb string
tensions as shown in Fig. 4 do not vanish for those tem-
peratures, the values of which increase with temperature,
and the rate of increase of the temperature is more rapid
than those of the string tension

�������������
�c�T�

p
. This tendency is

acceptable if the color-Coulomb string tension at finite
temperature is regarded as a thermal quantity, such as the
electric and magnetic scaling described in Eqs. (17) and
(18).

From Eq. (4), it is clear that the instantaneous part made
by the Faddeev-Popov matrix is independent of time and a
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spatial-like quantity although the temporal and spatial
gluon fields are correlated by the self-interaction in
QCD. This situation is very similar to the case of the spatial
Wilson loop at finite temperature as reviewed in the pre-
vious section. Therefore, we shall describe these data by
the magnetic scaling:

T�������������
�c�T�

p �
1

c
1

g2�T�
; (19)

and the running coupling depending on the system tem-
perature,

1

g2�T�
� 2b0 ln

T
�
�
b1

b0
ln
�
2 ln

T
�

�
; (20)

where c and � are free parameters for fitting. Using the
data for T=Tc � 1:5–5:0 we obtained the fitted result,
listed in Table I, and, in particular, the fitted line using
the data for T=Tc � 2:0–4:0 is shown as the solid line in
Fig. 5. It is found that the color-Coulomb string tension in
the thermal phase is described by the magnetic scaling.

The fitted results in the present lattice simulation seem
to depend significantly on the fitting condition. However,
the fitted value of the coefficient by the magnetic scaling is
comparable with that reported by the following studies:
c � 0:566�13� and �=Tc � 0:104�9� by the lattice calcu-
lation of the spatial Wilson loop in Ref. [19], c �
0:554�04� by the numerical study of the 3-D SU�3� gauge
theory in Ref. [21], and c � 0:482�31�–0:549�16� from the
lattice calculation of the spatial gluon propagator in
Ref. [40]. Furthermore, the analysis of the magnetic mass
in a self-consistent way of high QCD theory leads to c�
0:569 [41]. If one requires more precise data for magnetic
(spatial) or long-range quantities, which are expected to be
sensitive to the volume size [40], then the computation on
the larger lattice is necessary.

In addition, if we assume the electric scaling given by
Eq. (17) to describe the thermal color-Coulomb string
tension, then the function 1=cg�T� is employed. The results
are listed in Table I and the resultant line obtained in the
fitted range of T=Tc � 2:0–4:0 is shown as the dashed line
in Fig. 5. It seems that the electric scaling also yields a
-5
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good description. In the perturbation theory of the leading
order, the coefficient of the electric scaling is known to be
c � 1 [37], and, moreover, the nonperturbative lattice
simulation gives the electric scaling with c > 1 [40].
Thus, this procedure may not be as proper a way as the
analysis based on magnetic scaling. Nonetheless, this im-
plies that, in the temperature range of T=Tc � 1:5–5:0, the
magnitude of the coupling constant is of order 1, i.e. there
still remains a strong nonperturbative effect. As a result,
the distinction between g2�T� and g�T� is not so clear from
the present numerical data.
V. CONCLUSIONS

We have investigated the scaling behavior of the color-
Coulomb string tension in the confinement and deconfine-
ment phases using quenched SU�3� lattice gauge simula-
tions. The color-Coulomb potential, defined by the
Faddeev-Popov operator, is an important quantity in dis-
cussing the confinement scenario in Coulomb gauge, and
also from a phenomenological point of view. We have
confirmed the scaling behavior of the instantaneous
color-Coulomb string tension in the confinement and de-
confinement phases.

In the confinement phase, the instantaneous color-
Coulomb potential behaves as a linearly rising potential
at large distances. As a consequence, there exists the non-
vanishing color-Coulomb string tension for several cou-
pling constants (�’s) investigated in this work, the values
of which are approximately 2 times as large as that of the
Wilson loop string tensions. The variation of color-
Coulomb string tension on the lattice cutoff is also found
to be small although we are still far from the continuum
limit. These results are qualitatively consistent with those
obtained by the same analysis in the SU�2� lattice calcu-
lations in Refs. [11,12]. Note that if one employs the gluon
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propagator itself to extract the instantaneous part, then the
value of the color-Coulomb string tension tends to become
smaller than that measured by using the Polyakov loop
correlator as used in the present work [42]. However, it is
concluded in Ref. [43] that the emergence of a large string
tension is not ruled out.

Even in the deconfinement phase, it is observed that the
color-Coulomb string tension remains finite. This may be
an acceptable result because the instantaneous part is con-
structed in terms of the Faddeev-Popov matrix with the
derivative operator for the spatial direction; i.e., the instan-
taneous part is not sensitive to the system temperature.
Nevertheless, we should also note that the thermal fluctua-
tion still produces a color-screened dynamics as has been
reported in Ref. [13].

The remarkable feature that the color-Coulomb string
tension does not disappear in the deconfinement phase was
first shown in the SU�2� lattice calculation [12] done by
Greensite, Olejnı́k, and Zwanziger. It is confirmed in the
present study that the SU�3� gauge theory has the same
feature, and we investigated extensively the temperature
dependence of the color-Coulomb string tension, which is
found to be in proportion to the temperature. Note that this
issue is supported through the discussion of the remnant
symmetry in Coulomb gauge [12,44].

The occurrence of a confining force in the deconfine-
ment phase was observed in other studies. The existence of
the spatial string tension above Tc is well known. In
addition, as reported in Ref. [20], by the SU�2� lattice
simulation in a maximally Abelian gauge, the spatial
Wilson loop can almost be reproduced by the wrapped
monopole loops. In particular, the 3-D reduction arguments
support these phenomena. For the case of the Coulomb
gauge QCD, the confining linearity in the deconfinement
phase is caused by the instantaneous part.

In both confinement and deconfinement phases, there is
no qualitative change in the behavior of the instantaneous
part. Therefore, it is evident that the color-Coulomb string
tension obtained from that potential is not an order pa-
rameter for the QGP phase transition.

It is found that the thermal behavior of the color-
Coulomb string tension is understood by assuming the
magnetic scaling, �g2�T�T, which is actually identified
as an infrared regulator or a pole mass of the spatial gluon
propagator. If this is a possible interpretation, then we can
mention the following two points. First, we conclude that
the color-Coulomb string tension in the deconfinement
phase is a kind of thermal quantity and survives in the
high temperature limit as being the same as the case of the
spatial Wilson loop. Second, because the magnetic scaling
originates in the infrared sensitivity of the thermal QCD, in
the case of Coulomb gauge, the instantaneous part of the
gluon propagators reveals such infrared behavior.

In the Coulomb gauge confinement scenario discussed
by Gribov and Zwanziger [4,5], the linearity of the instan-
-6
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taneous part for large quark separations is conjectured to be
ascribed to a singularity emerging from the gauge configu-
rations with a low-lying eigenvalue of the Faddeev-Popov
operator. Hence, it is an important task that the distribution
of the eigenvalues of the Faddeev-Popov operator in
Coulomb gauge is investigated by the lattice simulation.
The SU�2� lattice simulation in Coulomb gauge performed
in Ref. [45] proves the indication of the enhancement of the
low-lying eigenvalues. The SU�3� lattice study along this
line is also being undertaken.

In the present work, we focused on the calculation of the
instantaneous part only and did not deal with the vacuum
polarization (retarded) part, which is of little significance
in the view of understanding color confinement in
Coulomb gauge. However, the vital change concerning
the QGP phase transition seems to be relevant to the
vacuum polarization part, the role of which ought to be
discussed in a subsequent study.

In a phenomenological point of view, it is interesting that
the thermal string tension remains. If this is regarded as the
094504
indication that confining features survive above the critical
temperature, then this observation may provide some in-
sight into understanding the strongly correlated QGP.
Reference [46] tried to describe the equation of state in
the quasiparticle model with the dispersion relation of
Gribov type. However, in other cases, it is not obvious
how the confining property in the thermal phase affects
physical spectroscopy. Nevertheless, in Coulomb gauge, it
is significant that these findings are achieved by classifying
the time-time gluon propagator into the instantaneous and
noninstantaneous parts.
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