48 research outputs found

    Multi-Wavelength Properties of Barred Galaxies in the Local Universe. I: Virgo Cluster

    Full text link
    We study in detail how the barred galaxy fraction varies as a function of luminosity, HI gas mass, morphology and color in the Virgo cluster in order to provide a well defined, statistically robust measurement of the bar fraction in the local universe spanning a wide range in luminosity (factor of ~100) and HI gas mass. We combine multiple public data-sets (UKIDSS near-infrared imaging, ALFALFA HI gas masses, GOLDMine photometry). After excluding highly inclined systems, we define three samples where galaxies are selected by their B-band luminosity, H-band luminosity, and HI gas mass. We visually assign bars using the high resolution H-band imaging from UKIDSS. When all morphologies are included, the barred fraction is ~17-24% while for morphologically selected discs, we find that the barred fraction in Virgo is ~29-34%: it does not depend strongly on how the sample is defined and does not show variations with luminosity or HI gas mass. The barred fraction depends most strongly on the morphological composition of the sample: when the disc populations are separated into lenticulars (S0--S0/a), early-type spirals (Sa--Sb), and late-type spirals (Sbc--Sm), we find that the early-type spirals have a higher barred fraction (~45-50%) compared to the lenticulars and late-type spirals (~22-36%). This difference may be due to the higher baryon fraction of early-type discs which makes them more susceptible to bar instabilities. We do not find any evidence of barred galaxies being preferentially blue.Comment: 13 pages, 14 figures. Submitted to Ap

    The Importance of AGN in an Assembling Galaxy Cluster

    Full text link
    We present results from our multi-wavelength study of SG1120, a super galaxy group at z=0.37, that will merge to form a galaxy cluster comparable in mass to Coma. We have spectroscopically confirmed 174 members in the four X-ray luminous groups that make up SG1120, and these groups have velocity dispersions of sigma(1D)=303-580 km/s. We find that the supergroup has an excess of 24 micron members relative to CL1358+62, a rich galaxy cluster at z=0.33. SG1120 also has an increasing fraction of 24 micron members with decreasing local galaxy density, i.e. an infrared-density relation, that is not observed in the rich cluster. We detect nine of the group galaxies in VLA 1.4 Ghz imaging, and comparison of the radio to total infrared luminosities indicates that about 30% of these radio-detected members have AGN. The radio map also reveals that one of the brightest group galaxies has radio jets. We are currently analysing the 1.4 Ghz observations to determine if AGN can significantly heat the intrahalo medium and if AGN are related to the excess of 24 micron members.Comment: 4 page proceedings, "The Monster's Fiery Breath: Feedback in Galaxies, Groups, and Clusters

    Catalog of Galaxy Morphology in Four Rich Clusters: Luminosity Evolution of Disk Galaxies at 0.33<z<0.83

    Full text link
    Hubble Space Telescope (HST) imaging of four rich, X-ray luminous, galaxy clusters (0.33<z<0.83) is used to produce quantitative morphological measurements for galaxies in their fields. Catalogs of these measurements are presented for 1642 galaxies brighter than F814W(AB)=23.0 . Galaxy luminosity profiles are fitted with three models: exponential disk, de Vaucouleurs bulge, and a disk-plus-bulge hybrid model. The best fit is selected and produces a quantitative assessment of the morphology of each galaxy: the principal parameters derived being B/T, the ratio of bulge to total luminosity, the scale lengths and half-light radii, axial ratios, position angles and surface brightnesses of each component. Cluster membership is determined using a statistical correction for field galaxy contamination, and a mass normalization factor (mass within boundaries of the observed fields) is derived for each cluster. In the present paper, this catalog of measurements is used to investigate the luminosity evolution of disk galaxies in the rich-cluster environment. Examination of the relations between disk scale-length and central surface brightness suggests, under the assumption that these clusters represent a family who share a common evolutionary history and are simply observed at different ages, that there is a dramatic change in the properties of the small disks (h < 2 kpc). This change is best characterized as a change in surface brightness by about 1.5 magnitude between z=0.3 and z=0.8 with brighter disks at higher redshifts.Comment: 53 pages, including 13 figures and 7 tables. Accepted for publication in the Astrophysical Journal Supplement Serie

    COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies: III. Comparison with semi-analytic models of galaxy formation

    Full text link
    We compare the semi-analytic models of galaxy formation of Fu et al. (2010), which track the evolution of the radial profiles of atomic and molecular gas in galaxies, with gas fraction scaling relations derived from the COLD GASS survey (Saintonge et al 2011). The models provide a good description of how condensed baryons in galaxies with gas are partitioned into stars, atomic and molecular gas as a function of galaxy stellar mass and surface density. The models do not reproduce the tight observed relation between stellar surface density and bulge-to-disk ratio for this population. We then turn to an analysis of the"quenched" population of galaxies without detectable cold gas. The current implementation of radio-mode feedback in the models disagrees strongly with the data. In the models, gas cooling shuts down in nearly all galaxies in dark matter halos above a mass of 10**12 M_sun. As a result, stellar mass is the observable that best predicts whether a galaxy has little or no neutral gas. In contrast, our data show that quenching is largely independent of stellar mass. Instead, there are clear thresholds in bulge-to-disk ratio and in stellar surface density that demarcate the location of quenched galaxies. We propose that processes associated with bulge formation play a key role in depleting the neutral gas in galaxies and that further gas accretion is suppressed following the formation of the bulge, even in dark matter halos of low mass.Comment: 12 figures, accepted for publication in MNRAS, the COLD GASS data is available at http://www.mpa-garching.mpg.de/COLD_GASS/data.shtm

    Multi-wavelength Study of Galaxy Rotation Curves and its Application to Cosmology

    Full text link
    Rotation information for spiral galaxies can be obtained through the observation of different spectral lines. While the Halpha(6563 A) line is often used for galaxies with low to moderate redshifts, it is redshifted into the near-infrared at z>0.4. This is why most high redshift surveys rely on the [OII](3727 A) line. Using a sample of 32 spiral galaxies at 0.155 < z < 0.25 observed simultaneously in both Halpha and [OII] with the Hale 200 inch telescope, the relation between velocity widths extracted from these two spectral lines is investigated, and we conclude that Halpha derived velocities can be reliably compared to high z [OII] measurements. The sample of galaxies is then used along with VIMOS-VLT Deep Survey observations to perform the angular diameter - redshift test to find constraints on cosmological parameters. The test makes it possible to discriminate between various cosmological models, given the upper limit of disc size evolution at the maximum redshift of the data set, no matter what the evolutionary scenario is.Comment: 2 pages, to be published in the proceedings of the Vth Marseille International Cosmology Conferenc

    Star formation in the cluster CLG0218.3-0510 at z=1.62 and its large-scale environment: the infrared perspective

    Full text link
    The galaxy cluster CLG0218.3-0510 at z=1.62 is one of the most distant galaxy clusters known, with a rich muti-wavelength data set that confirms a mature galaxy population already in place. Using very deep, wide area (20x20 Mpc) imaging by Spitzer/MIPS at 24um, in conjunction with Herschel 5-band imaging from 100-500um, we investigate the dust-obscured, star-formation properties in the cluster and its associated large scale environment. Our galaxy sample of 693 galaxies at z=1.62 detected at 24um (10 spectroscopic and 683 photo-z) includes both cluster galaxies (i.e. within r <1 Mpc projected clustercentric radius) and field galaxies, defined as the region beyond a radius of 3 Mpc. The star-formation rates (SFRs) derived from the measured infrared luminosity range from 18 to 2500 Ms/yr, with a median of 55 Ms/yr, over the entire radial range (10 Mpc). The cluster brightest FIR galaxy, taken as the centre of the galaxy system, is vigorously forming stars at a rate of 256±\pm70 Ms/yr, and the total cluster SFR enclosed in a circle of 1 Mpc is 1161±\pm96 Ms/yr. We estimate a dust extinction of about 3 magnitudes by comparing the SFRs derived from [OII] luminosity with the ones computed from the 24um fluxes. We find that the in-falling region (1-3 Mpc) is special: there is a significant decrement (3.5x) of passive relative to star-forming galaxies in this region, and the total SFR of the galaxies located in this region is lower (130 Ms/yr/Mpc2) than anywhere in the cluster or field, regardless of their stellar mass. In a complementary approach we compute the local galaxy density, Sigma5, and find no trend between SFR and Sigma5. However, we measure an excess of star-forming galaxies in the cluster relative to the field by a factor 1.7, that lends support to a reversal of the SF-density relation in CLG0218.Comment: accepted for publication in MNRAS. v2: minor correction

    Connection Between the Circumgalactic Medium and the Interstellar Medium of Galaxies: Results from the COS-GASS Survey

    Full text link
    We present a study exploring the nature and properties of the Circum-Galactic Medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the HI 21cm line. Our sample includes 45 low-z (0.026-0.049) galaxies from the GALEX Arecibo SDSS Survey. Their CGM was probed via absorption in the spectra of background Quasi-Stellar Objects at impact parameters of 63 to 231kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Lyα\alpha absorption-lines) in the CGM of 92% of the galaxies. We find the radial profile of the CGM as traced by the Lyα\alpha equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of sightline relative to the galaxy major axis and the Lyα\alpha equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the interstellar medium. We find a strong correlation (99.8% confidence) between the gas fraction (M(HI)/M*) and the impact-parameter-corrected Lyα\alpha equivalent width. This is stronger than the analogous correlation between corrected Lyα\alpha equivalent width and SFR/M* (97.5% confidence). These results imply a physical connection between the HI disk and the CGM, which is on scales an order-of-magnitude larger. This is consistent with the picture in which the HI disk is nourished by accretion of gas from the CGM.Comment: 13 pages, 9 figures, and 2 tables. Submitted to Ap

    xGASS: Cold gas content and quenching in galaxies below the star forming main sequence

    Get PDF
    We use HI and H2 global gas measurements of galaxies from xGASS and xCOLD GASS to investigate quenching paths of galaxies below the star formation main sequence (SFMS). We show that the population of galaxies below the SFMS is not a 1:1 match with the population of galaxies below the HI and H2 gas fraction scaling relations. Some galaxies in the transition zone (TZ) 1-sigma below the SFMS can be as HI-rich as those in the SFMS, and have on average longer gas depletion timescales. We find evidence for environmental quenching of satellites, but central galaxies in the TZ defy simple quenching pathways. Some of these so-called "quenched" galaxies may still have significant gas reservoirs and be unlikely to deplete them anytime soon. As such, a correct model of galaxy quenching cannot be inferred with SFR (or other optical observables) alone, but must include observations of the cold gas. We also find that internal structure (particularly, the spatial distribution of old and young stellar populations) plays a significant role in regulating the star formation of gas-rich isolated TZ galaxies, suggesting the importance of bulges in their evolution.Comment: 15 pages, 11 figures, accepted for publication in MNRA
    corecore