825 research outputs found

    An Algorithm for Viability Kernels in Hoelderian Case: Approximation by Discrete Dynamical Systems

    Get PDF
    In this paper, we study two new methods for approximating the viability kernel of a given set for a Holderian differential inclusion. We approximate this kernel by viability kernels for discrete dynamical systems. We prove a convergence result when the differential inclusion is replaced by a sequence of recursive inclusions. Furthermore, when the given set is approached by a sequence of suitable finite sets, we prove our second main convergence result. This paper is the first step to obtain numerical methods

    Viability-based computation of spatially constrained minimum time trajectories for an autonomous underwater vehicle: implementation and experiments.

    Get PDF
    A viability algorithm is developed to compute the constrained minimum time function for general dynamical systems. The algorithm is instantiated for a specific dynamics(Dubin’s vehicle forced by a flow field) in order to numerically solve the minimum time problem. With the specific dynamics considered, the framework of hybrid systems enables us to solve the problem efficiently. The algorithm is implemented in C using epigraphical techniques to reduce the dimension of the problem. The feasibility of this optimal trajectory algorithm is tested in an experiment with a Light Autonomous Underwater Vehicle (LAUV) system. The hydrodynamics of the LAUV are analyzed in order to develop a low-dimension vehicle model. Deployment results from experiments performed in the Sacramento River in California are presented, which show good performance of the algorithm.trajectories; underwater vehicle; viability algorithm; hybrid systems; implementation;

    Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.

    Get PDF
    The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing

    Interaction of an acid protease with positively charged phosphatidylcholine bilayers

    Get PDF
    Positively charged bilayers composed of phosphatidylcholine (PC) and stearylamine (SA) in a 4:1 ratio reduce the effectiveness of a protease from Mucor miehei to produce milk clotting. This is related to the adsorption of the protein, which at pH 7 is negatively charged, by electrostatic forces. However, an increase in SA, which increases the membrane packing parallel to the increase in the surface charge density, counteracts the protein membrane association. This is in agreement with the fact that the protease can also adsorb on pure phosphadylcholine bilayers in the fluid state but not in the gel state. In addition, the presence of phosphatidylethanolamine also inhibits protease adsorption. It is concluded that the protein affects the membrane interface of fluid PC membranes because the electrostatic charges pull the protein to the bilayer interface causing changes in hydration and area per molecule. The adsorption is only at the level of the polar head groups since no effects were observed in the hydrocarbon core region.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    The EnerGEO Platform of Integrated Assessment (PIA): environmental assessment of scenarios as a web service

    No full text
    International audienceWith the International Energy Agency estimating that global energy demand will increase between 40 and 50 percent by 2030 (compared to 2003), scientists and policymakers are concerned about the sustainability of the current energy system and what environmental pressures might result from the development of future energy systems. EnerGEO is an ongoing FP7 Project (2009-2013) which assesses the current and future impact of energy use on the environment by linking environmental observation systems with the processes involved in exploiting energy resources. The idea of this European project is to determine how low carbon scenarios, and in particular scenarios with a high share of renewable electricity, affect emissions of air pollutants and greenhouse gases (GHG) and contribute to mitigation of negative energy system impacts on human health and ecosystems. A Platform of Integrated Assessment (PIA) has been elaborated to provide impact results for a selection of scenarios via a set of models (large-scale energy models, Life Cycle Assessment models, ...). This PIA is currently available through a web service. The concept of the PIA is detailed and to illustrate its interest, a set of results is given with the use of the simulation mode of the European version of GAINS for a selection of scenarios

    Inherent thermometry in a hybrid superconducting tunnel junction

    Full text link
    We discuss inherent thermometry in a Superconductor - Normal metal - Superconductor tunnel junction. In this configuration, the energy selectivity of single-particle tunneling can provide a significant electron cooling, depending on the bias voltage. The usual approach for measuring the electron temperature consists in using an additional pair of superconducting tunnel junctions as probes. In this paper, we discuss our experiment performed on a different design with no such thermometer. The quasi-equilibrium in the central metallic island is discussed in terms of a kinetic equation including injection and relaxation terms. We determine the electron temperature by comparing the micro-cooler experimental current-voltage characteristic with isothermal theoretical predictions. The limits of validity of this approach, due to the junctions asymmetry, the Andreev reflection or the presence of sub-gap states are discussed

    Rapid cognitive decline, one-year institutional admission and one-year mortality: Analysis of the ability to predict and inter-tool agreement of four validated clinical frailty indexes in the safes cohort

    Get PDF
    Objectives: To evaluate the predictive ability of four clinical frailty indexes as regards one-year rapid cognitive decline (RCD — defined as the loss of at least 3 points on the MMSE score), and one-year institutional admission (IA) and mortality respectively; and to measure their agreement for identifying groups at risk of these severe outcomes. Design: One-year follow-up and multicentre study of old patients participating in the SAFEs cohort study. Setting: Nine university hospitals in France. Participants: 1,306 patients aged 75 or older (mean age 85±6 years; 65% female) hospitalized in medical divisions through an Emergency department. Measurements: Four frailty indexes (Winograd; Rockwood; Donini; and Schoevaerdts) reflecting the multidimensionality of the frailty concept, using an ordinal scoring system able to discriminate different grades of frailty, and constructed based on the accumulation of identified deficits after comprehensive geriatric assessment conducted during the first week of hospital stay, were used to categorize participants into three different grades of frailty: Gl — not frail; G2 — moderately frail; and G3 — severely frail. Comparisons between groups were performed using Fisher's exact test. Agreement between indexes was evaluated using Cohen's Kappa coefficient. Results: All patients were classified as frail by at least one of the four indexes. The Winograd and Rockwood indexes mainly classified subjects as G2 (85% and 96%), and the Donini and Schoevaerdts indexes mainly as G3 (71% and 67%). Among the SAFEs cohort population, 250, 1047 and 1,306 subjects were eligible for analyses of predictability for RCD, 1-year IA and 1-year mortality respectively. At 1 year, 84 subjects (34%) experienced RCD, 377 (36%) were admitted into an institutional setting, and 445 (34%) had died With the Rockwood index, all subjects who expenenced RCD were classified in G2; and in G2 and G3 when the Donini and Schoevaerdts indexes were used No significant difference was found between frailty grade and RCD, whereas frailty grade was significantly associated with an increased risk of IA and death, whatever the frailty index considered. Agreement between the different indexes of frailty was poor with Kappa coefficients ranging from −0.02 to 0.15. Conclusion: These findings confirm the poor clinimetric properties of these current indexes to measure frailty, underlining the fact that further work is needed to develop a better and more widely-accepted definition of frailty and therefore a better understanding of its pathophysiolog

    Laser microfluidics: fluid actuation by light

    Full text link
    The development of microfluidic devices is still hindered by the lack of robust fundamental building blocks that constitute any fluidic system. An attractive approach is optical actuation because light field interaction is contactless and dynamically reconfigurable, and solutions have been anticipated through the use of optical forces to manipulate microparticles in flows. Following the concept of an 'optical chip' advanced from the optical actuation of suspensions, we propose in this survey new routes to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid interfaces by the optical radiation pressure and the formation of liquid jets. We analyze the droplet shedding from the jet tip and the continuous transport in laser-sustained liquid channels. In the second part, we investigate a dissipative light-flow interaction mechanism consisting in heating locally two immiscible fluids to produce thermocapillary stresses along their interface. This opto-capillary coupling is implemented in adequate microchannel geometries to manipulate two-phase flows and propose a contactless optical toolbox including valves, droplet sorters and switches, droplet dividers or droplet mergers. Finally, we discuss radiation pressure and opto-capillary effects in the context of the 'optical chip' where flows, channels and operating functions would all be performed optically on the same device

    The continuous flowering gene in rose is a floral inhibitor

    Get PDF
    In rose, RoKSN, a TFL1 homologue, is a key regulator of continuous flowering. To study the function of this gene in planta, protocols of plant transformation are needed. We complemented tfl1 Arabidopsis mutants and ectopically expressed RoKSN in a continuous-flowering rose. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In continuous-flowering rose, the ectopic expression of RoKSN led to the absence of flowering. In these transgenic roses, a study of genes implied in the floral regulation was carried out. The floral activator transcripts decreased whereas the FD transcription factor is up-regulated. We conclude that RoKSN is a floral repressor and could regulate the expression of transcripts as RoFT and RoFD. These results could strengthen a mechanism of competitive interactions of RoFT and RoKSN with a common partner, FD to move towards flowering or vegetative developments
    corecore