1,507 research outputs found

    Spin Gap in the Single Spin-1/2 Chain Cuprate Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3

    Full text link
    We report 63^{63}Cu nuclear magnetic resonance and muon spin rotation measurements on the S=1/2 antiferromagnetic Heisenberg spin chain compound Sr1.9_{1.9}Ca0.1_{0.1}CuO3_3. An exponentially decreasing spin-lattice relaxation rate 1/T1_1 indicates the opening of a spin gap. This behavior is very similar to what has been observed for the cognate zigzag spin chain compound Sr0.9_{0.9}Ca0.1_{0.1}CuO2_2, and confirms that the occurrence of a spin gap upon Ca doping is independent of the interchain exchange coupling J′J'. Our results therefore generally prove the appearance of a spin gap in an antiferromagnetic Heisenberg spin chain induced by a local bond disorder of the intrachain exchange coupling JJ. A low temperature upturn of 1/T1_1 evidences growing magnetic correlations. However, zero field muon spin rotation measurements down to 1.5 K confirm the absence of magnetic order in this compound which is most likely suppressed by the opening of the spin gap.Comment: 5 pages, 4 figure

    Hubbard band or oxygen vacancy states in the correlated electron metal SrVO3_3?

    Full text link
    We study the effect of oxygen vacancies on the electronic structure of the model strongly correlated metal SrVO3_3. By means of angle-resolved photoemission (ARPES) synchrotron experiments, we investigate the systematic effect of the UV dose on the measured spectra. We observe the onset of a spurious dose-dependent prominent peak at an energy range were the lower Hubbard band has been previously reported in this compound, raising questions on its previous interpretation. By a careful analysis of the dose dependent effects we succeed in disentangling the contributions coming from the oxygen vacancy states and from the lower Hubbard band. We obtain the intrinsic ARPES spectrum for the zero-vacancy limit, where a clear signal of a lower Hubbard band remains. We support our study by means of state-of-the-art ab initio calculations that include correlation effects and the presence of oxygen vacancies. Our results underscore the relevance of potential spurious states affecting ARPES experiments in correlated metals, which are associated to the ubiquitous oxygen vacancies as extensively reported in the context of a two-dimensional electron gas (2DEG) at the surface of insulating d0d^0 transition metal oxides.Comment: Manuscript + Supplemental Material, 12 pages, 9 figure

    Mise en oeuvre d'un outil d'alerte et de cartographie temps réel des aléas naturels liés aux précipitations dans les régions montagneuses et méditerranéennes du Sud-Est de la France

    Get PDF
    International audienceDue to its mountainous topography and its Mediterranean climate, the Provence-Alpes-CĂ´te d'Azur (PACA) region in Southeastern France is particularly prone to flash floods, debris flows and mass movements (landslides and rockfall). A mapping system for these rainfall induced hazards has been tested by local and regional authorities and Government agencies since 2011 as part of the RHYTMME project. This system allows, thank to radar rainfall estimation and rainfall-runoff modelling, the real-time warning and monitoring of flash floods wherever they may occur in the PACA territory. It is also intended to enable, during intense rainfall events, the localisation of the streams susceptible to generate debris flows and of the slopes the more likely to trigger landslides and/or rockfalls

    First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    Full text link
    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.Comment: SPIE conference proceeding

    A detector interferometric calibration experiment for high precision astrometry

    Full text link
    Context: Exoplanet science has made staggering progress in the last two decades, due to the relentless exploration of new detection methods and refinement of existing ones. Yet astrometry offers a unique and untapped potential of discovery of habitable-zone low-mass planets around all the solar-like stars of the solar neighborhood. To fulfill this goal, astrometry must be paired with high precision calibration of the detector. Aims: We present a way to calibrate a detector for high accuracy astrometry. An experimental testbed combining an astrometric simulator and an interferometric calibration system is used to validate both the hardware needed for the calibration and the signal processing methods. The objective is an accuracy of 5e-6 pixel on the location of a Nyquist sampled polychromatic point spread function. Methods: The interferometric calibration system produced modulated Young fringes on the detector. The Young fringes were parametrized as products of time and space dependent functions, based on various pixel parameters. The minimization of func- tion parameters was done iteratively, until convergence was obtained, revealing the pixel information needed for the calibration of astrometric measurements. Results: The calibration system yielded the pixel positions to an accuracy estimated at 4e-4 pixel. After including the pixel position information, an astrometric accuracy of 6e-5 pixel was obtained, for a PSF motion over more than five pixels. In the static mode (small jitter motion of less than 1e-3 pixel), a photon noise limited precision of 3e-5 pixel was reached

    A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations

    Get PDF
    This paper presents a new version of the Météo-France CNRM Chemistry-Climate Model, so-called CNRM-CCM. It includes some fundamental changes from the previous version (CNRM-ACM) which was extensively evaluated in the context of the CCMVal-2 validation activity. The most notable changes concern the radiative code of the GCM, and the inclusion of the detailed stratospheric chemistry of our Chemistry-Transport model MOCAGE on-line within the GCM. A 47-yr transient simulation (1960–2006) is the basis of our analysis. CNRM-CCM generates satisfactory dynamical and chemical fields in the stratosphere. Several shortcomings of CNRM-ACM simulations for CCMVal-2 that resulted from an erroneous representation of the impact of volcanic aerosols as well as from transport deficiencies have been eliminated. <br><br> Remaining problems concern the upper stratosphere (5 to 1 hPa) where temperatures are too high, and where there are biases in the NO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub> and O<sub>3</sub> mixing ratios. In contrast, temperatures at the tropical tropopause are too cold. These issues are addressed through the implementation of a more accurate radiation scheme at short wavelengths. Despite these problems we show that this new CNRM CCM is a useful tool to study chemistry-climate applications

    A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: evaluation of the present-day climatology and sensitivity to surface processes

    No full text
    International audienceWe present the chemistry-climate configuration of the Météo-France Chemistry and Transport Model, MOCAGE-Climat. MOCAGE-Climat is a state-of-the-art model that simulates the global distribution of ozone and its precursors (82 chemical species) both in the troposphere and the stratosphere, up to the mid-mesosphere (~70 km). Surface processes (emissions, dry deposition), convection, and scavenging are explicitly described in the model that has been driven by the ECMWF operational analyses of the period 2000–2005, on T21 and T42 horizontal grids and 60 hybrid vertical levels, with and without a procedure that reduces calculations in the boundary layer, and with on-line or climatological deposition velocities. Model outputs have been compared to available observations, both from satellites (TOMS, HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instrument measurements (ozone sondes, MOZAIC and aircraft campaigns) at climatological timescales. The distribution of long-lived species is in fair agreement with observations in the stratosphere putting apart shortcomings linked to the large-scale circulation. The variability of the ozone column, both spatially and temporarily, is satisfactory. However, the too fast Brewer-Dobson circulation accumulates too much ozone in the lower to mid-stratosphere at the end of winter. Ozone in the UTLS region does not show any systematic bias. In the troposphere better agreement with ozone sonde measurements is obtained at mid and high latitudes than in the tropics and differences with observations are the lowest in summer. Simulations using a simplified boundary layer lead to ozone differences between the model and the observations up to the mid-troposphere. NOx in the lowest troposphere is in general overestimated, especially in the winter months over the northern hemisphere, which might result from a positive bias in OH. Dry deposition fluxes of O3 and nitrogen species are within the range of values reported by recent inter-comparison model exercises. The use of climatological deposition velocities versus deposition velocities calculated on-line had greatest impact on HNO3 and NO2 in the troposphere

    Little-Parks effect and multiquanta vortices in a hybrid superconductor--ferromagnet system

    Full text link
    Within the phenomenological Ginzburg-Landau theory we investigate the phase diagram of a thin superconducting film with ferromagnetic nanoparticles. We study the oscillatory dependence of the critical temperature on an external magnetic field similar to the Little-Parks effect and formation of multiquantum vortex structures. The structure of a superconducting state is studied both analytically and numerically.Comment: 7 pages, 1 figure. Submitted to J. Phys.: Condens. Mat
    • …
    corecore