73 research outputs found

    A Patient with Constitutional Ring 1 Chromosome Characterized by SNP Array CGH

    Get PDF
    We present a male patient with constitutional ring 1 chromosome and subsequent 6 Mb deletion at 1q43q44. The patient displays overlapping clinical features with reported patients with ring 1 chromosome and 1q43q44 microdeletion syndrome. To our knowledge, this is the first patient with ring 1 chromosome characterized by comparative genomic hybridization

    Multi-Attribute Utility Preference Robust Optimization: A Continuous Piecewise Linear Approximation Approach

    Full text link
    In this paper, we consider a multi-attribute decision making problem where the decision maker's (DM's) objective is to maximize the expected utility of outcomes but the true utility function which captures the DM's risk preference is ambiguous. We propose a maximin multi-attribute utility preference robust optimization (UPRO) model where the optimal decision is based on the worst-case utility function in an ambiguity set of plausible utility functions constructed using partially available information such as the DM's specific preferences between some lotteries. Specifically, we consider a UPRO model with two attributes, where the DM's risk attitude is multivariate risk-averse and the ambiguity set is defined by a linear system of inequalities represented by the Lebesgue-Stieltjes (LS) integrals of the DM's utility functions. To solve the maximin problem, we propose an explicit piecewise linear approximation (EPLA) scheme to approximate the DM's true unknown utility so that the inner minimization problem reduces to a linear program, and we solve the approximate maximin problem by a derivative-free (Dfree) method. Moreover, by introducing binary variables to locate the position of the reward function in a family of simplices, we propose an implicit piecewise linear approximation (IPLA) representation of the approximate UPRO and solve it using the Dfree method. Such IPLA technique prompts us to reformulate the approximate UPRO as a single mixed-integer program (MIP) and extend the tractability of the approximate UPRO to the multi-attribute case. Furthermore, we extend the model to the expected utility maximization problem with expected utility constraints where the worst-case utility functions in the objective and constraints are considered simultaneously. Finally, we report the numerical results about performances of the proposed models.Comment: 50 pages,18 figure

    Diagnosis of Classic Homocystinuria in Two Boys Presenting with Acute Cerebral Venous Thrombosis and Neurologic Dysfunction after Normal Newborn Screening

    Get PDF
    Homocystinuria, caused by cystathionine β-synthase deficiency, is a rare inherited disorder involving metabolism of methionine. Impaired synthesis of cystathionine leads to accumulation of homocysteine that affects several organ systems leading to abnormalities in the skeletal, cardiovascular, ophthalmic and central nervous systems. We report a 14-month-old and a 7-year-old boy who presented with neurologic dysfunction and were found to have cerebral venous sinus thromboses on brain magnetic resonance imaging (MRI)/magnetic resonance venogram (MRV) and metabolic and hypercoagulable work-up were consistent with classic homocystinuria. The 14-month-old boy had normal newborn screening. The 7-year-old boy initially had an abnormal newborn screen for homocystinuria but second tier test that consisted of total homocysteine was normal, so his newborn screen was reported as normal. With the advent of expanded newborn screening many treatable metabolic disorders are detected before affected infants and children become symptomatic. Methionine is the primary target in newborn screening for homocystinuria and total homocysteine is a secondary target. Screening is usually performed after 24–48 h of life in most states in the US and some states perform a second screen as a policy on all tested newborns or based on when the initial newborn screen was performed. This is done in hopes of detecting infants who may have been missed on their first screen. In the United Kingdom, NBS using dried blood spot is performed at 5 to 8 days after birth. It is universally known that methionine is a poor target and newborn screening laboratories have used different cutoffs for a positive screen. Reducing the methionine cutoff increases the sensitivity but not necessarily the specificity of the test and increasing the cutoff will miss babies who may have HCU whose levels may not be high enough to be detected at their age of ascertainment. It is not clear whether adjusting methionine level to decrease the false negative rates combined with total homocysteine as a second-tier test can be used effectively and feasibly to detect newborns with HCU. Between December 2005 and December 2020, 827,083 newborns were screened in Kentucky by MS/MS. Kentucky NBS program uses the postanalytical tools offered by the Collaborative Laboratory Integrated Reports (CLIR) project which considers gestational age and birthweight. One case of classical homocystinuria was detected and two were missed on first and second tier tests respectively. The newborn that had confirmed classical homocystinuria was one of twenty-three newborns that were referred for second tier test because of elevated methionine (cutoff is \u3e60 µmol/L) and/or Met/Phe ratio (cutoff is \u3e1.0); all 23 dried blood spots had elevated total homocysteine. One of the subjects of this case report had a normal methionine on initial screen and the other had a normal second-tier total homocysteine level. The performance of methionine and total homocysteine as screening analytes for homocystinuria suggest that it may be time for newborn screening programs to consider adopting next generation sequencing (NGS) platforms as alternate modality of metabolic newborn screening. Because of cost considerations, newborn screening programs may not want to adopt NGS, but the downstream healthcare cost incurred due to missed cases and the associated morbidity of affected persons far exceed costs to newborn screen programs. Since NGS is becoming more widely available and inexpensive, it may be feasible to change testing algorithms to use Newborn Metabolic NGS as the primary mode of testing on dry blood specimens with confirmation with biochemical testing. Some commercial laboratories have Newborn Screening Metabolic gene panel that includes all metabolic disorders on the most comprehensive newborn screening panel in addition to many other conditions that are not on the panel. A more targeted NGS panel can be designed that may not cost much and eventually help avoid the pitfalls associated with delayed diagnosis and cost of screening

    Identification and validation of ferroptosis-related genes and immune cell infiltration in thyroid associated ophthalmopathy

    Get PDF
    Thyroid associated ophthalmopathy (TAO) is an orbital autoimmune inflammatory disease that is commonly associated with thyroid dysfunction. Although the etiology of TAO is unclear, ROS accumulation and oxidative stress have been closely linked to the pathogenesis of TAO. Ferroptosis is an iron-dependent programmed cell death characterized by intracellular labile iron levels, excessive accumulation of reactive oxygen species (ROS) and lipid peroxidation. Currently, there are few reports regarding the role of ferroptosis in TAO. This article aimed to identify ferroptosis-related genes (FRGs) with diagnostic and therapeutic potential in TAO and explore their relationship with immune cells and lncRNAs. GSE58331 was downloaded from Gene Expression Omnibus (GEO) database. A total of 162 DEGs were identified between 27 TAO samples and 22 health samples from GSE58331, among which six FRGs (CYBB, CTSB, SLC38A1, TLR4, PEX3, and ABCC1) were obtained. The AUC of SLC38A1, TLR4, PEX3 in lacrimal gland tissues was greater than 80 which suggested high diagnostic value in TAO. The result of immune cell infiltrate analysis indicated increased infiltration of monocytes (p < 0.001), macrophages M0(p = 0.039), mast cells activated (p = 0.008), and neutrophils (p = 0.045) in orbital tissues from TAO patients. Meanwhile, mast cells resting (p = 0.043) and macrophages M2 (p = 0.02) showed reduced infiltration in TAO samples. There were no gender differences in immune cell infiltration in the TAO patients. Two differentially expressed lncRNAs, LINC01140 and ZFHX4-AS1, in TAO groups were identified as ferroptosis-related lncRNAs. CYBB-LINC01140-TLR4, CYBB- LINC01140- SLC38A1, TLR4- LINC01140- SLC38A1, and CTSB- ZFHX4-AS1- CYBB may be potential RNA regulatory pathways in TAO. Targeted drugs and transcription factors for differential expressed FRGs were also screened out in our study. In vitro, experiments revealed that CTSB, PEX3, ABCC1 and ZFHX4-AS1(lncRNA) were differentially expressed in orbital fibroblasts (OFs) between TAO groups and healthy controls at the transcriptional level

    Research Progress on Structure, Function and Application of β-1,3-Glucanases

    Get PDF
    β-1,3-Glucanases are enzymes that specifically hydrolyze β-1,3-glycosidic linkages bonds in β-1,3-glucan to generate a range of oligosaccharides or monosaccharides. β-1,3-Glucanases have important potential applications in functional oligosaccharide preparation, fruit and vegetable preservation, biopharmaceuticals, and plant disease resistance. β-1,3-Glucanases belonging to 12 glycoside hydrolase (GH) families have been identified, including GH16, GH17, GH55, GH64, GH81, GH128 and GH132. β-1,3-Glucanases are widely distributed in bacteria, fungi, plants and insects, which exhibit diverse structures and catalytic functions due to differences in sources and sequence evolution. Structural and functional studies of enzymes are the basis for exploring the catalytic mechanism, enzyme properties, and molecular modification. Therefore, this paper reviews the current state of research on the structure, function and application of β-1, 3-glucanases, in order to provide a reference for the basic research and application of β-1,3-glucanases

    Novel Fusion \u3ci\u3eKTN1-PRKD1\u3c/i\u3e in Cribriform Adenocarcinoma of Salivary Glands Located in the Parotid Gland: Case Report Including Cytologic Findings

    Get PDF
    Background Cribriform adenocarcinoma of salivary glands (CASG) is a rare, predominantly minor salivary gland tumor first described in 1999. Because the tumor shares morphologic and molecular features with polymorphous adenocarcinoma (PAC), in 2017, the World Health Organization (WHO) included CASG within the spectrum of PAC. Almost 75% of CASG harbor molecular alterations in the PRKD (Protein kinase D) gene family, and some cases show ARID1A (AT-rich interaction domain 1A)-PRKD1 or DDX3X (DEAD-Box Helicase 3 X-Linked)-PRKD1 fusions. Case presentation A 39-year-old man presented with headache and painless right cheek mass of two years duration. Imaging showed a well-circumscribed, lobulated 1.7-centimeter mass located in the superficial lobe of the right parotid gland. Fine needle aspiration (FNA) of the mass revealed a “salivary gland neoplasm of uncertain malignant potential” (SUMP). Histopathology and immunohistochemical features of the resected tumor showed a primary salivary gland neoplasm with perineural invasion suggestive of cribriform adenocarcinoma of the salivary glands (CASG). Whole exome sequencing (WES) and transcriptome sequencing (RNAseq) of the tumor revealed a novel, intrachromosomal gene fusion: KTN1 (Kinectin1)-PRKD1. Sanger sequencing and Florescent insitu hybridization (FISH) break apart probe results subsequently confirmed the presence of the fusion. The patient recovered from surgery without complications. Conclusion We report a novel fusion KTN1-PRKD1 in Cribriform Adenocarcinoma of the Salivary Glands located in the parotid gland. Importantly, this KTN1 fusion partner may account for other reports of intrachromosomal fusions in CASG in which the PRKD1 gene partner was not identified

    Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections

    Get PDF
    Background: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. Methods: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. Results: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα–remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. Conclusions: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections
    corecore