35 research outputs found

    Current-induced domain wall motion in compensated ferrimagnet

    Get PDF
    Due to the difficulty in detecting and manipulating magnetic states of antiferromagnetic materials, studying their switching dynamics using electrical methods remains a challenging task. In this work, by employing heavy metal/rare earth-transition metal alloy bilayers, we experimentally studied current-induced domain wall dynamics in an antiferromagnetically coupled system. We show that the current-induced domain wall mobility reaches a maximum close to the angular momentum compensation. With experiment and modelling, we further reveal the internal structures of domain walls and the underlying mechanisms for their fast motion. We show that the chirality of the ferrimagnetic domain walls remains the same across the compensation points, suggesting that spin orientations of specific sublattices rather than net magnetization determine Dzyaloshinskii-Moriya interaction in heavy metal/ferrimagnet bilayers. The high current-induced domain wall mobility and the robust domain wall chirality in compensated ferrimagnetic material opens new opportunities for high-speed spintronic devices.Comment: 13 pages, 3 figure

    Room temperature spin-orbit torque switching induced by a topological insulator

    Get PDF
    Recent studies on the magneto-transport properties of topological insulators (TI) have attracted great attention due to the rich spin-orbit physics and promising applications in spintronic devices. Particularly the strongly spin-moment coupled electronic states have been extensively pursued to realize efficient spin-orbit torque (SOT) switching. However, so far current-induced magnetic switching with TI has only been observed at cryogenic temperatures. It remains a controversial issue whether the topologically protected electronic states in TI could benefit spintronic applications at room temperature. In this work, we report full SOT switching in a TI/ferromagnet bilayer heterostructure with perpendicular magnetic anisotropy at room temperature. The low switching current density provides a definitive proof on the high SOT efficiency from TI. The effective spin Hall angle of TI is determined to be several times larger than commonly used heavy metals. Our results demonstrate the robustness of TI as an SOT switching material and provide a direct avenue towards applicable TI-based spintronic devices

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Magnetic domain wall based synaptic and activation function generator for neuromorphic accelerators

    No full text
    Magnetic domain walls are information tokens in both logic and memory devices and hold particular interest in applications such as neuromorphic accelerators that combine logic in memory. Here, we show that devices based on the electrical manipulation of magnetic domain walls are capable of implementing linear, as well as programmable nonlinear, functions. Unlike other approaches, domain-wall-based devices are ideal for application to both synaptic weight generators and thresholding in deep neural networks. Prototype micrometer-size devices operate with 8 ns current pulses and the energy consumption required for weight modulation is ≤16 pJ. Both speed and energy consumption compare favorably to other synaptic nonvolatile devices, with the expected energy dissipation for scaled 20 nm devices close to that of biological neurons.National Science Foundation (U.S.) (Award 1639921

    Edge-modulated perpendicular magnetic anisotropy in [Co/Pd][subscript n] and L1[subscript 0]-FePt thin film wires

    No full text
    Thickness modulation at the edges of nanostructured magnetic thin films is shown to have important effects on their perpendicular magnetic anisotropy. Thin film wires with tapered edges were made from [Co/Pd][subscript 20] multilayers or L1[subscript 0]-FePt films using liftoff with a double-layer resist. The effect of edge taper on the reversal process was studied using magnetic force microscopy and micromagnetic modeling. In [Co/Pd][subscript 20], the anisotropy was lower in the tapered edge regions which switched at a lower reverse field compared to the center of the wire. The L1[subscript 0]-FePt wires showed opposite behavior with the tapered regions exhibiting higher anisotropy.National Science Foundation (U.S.) (Award ECCS1101798
    corecore