995 research outputs found

    Differential Renormalization-Group Approach to the Layered sine-Gordon Model

    Full text link
    New qualitative picture of vortex length-scale dependence has been found in recent electrical transport measurements performed on strongly anisotropic BSCCO single crystals in zero magnetic field. This indicates the need for a better description of the 3D/2D crossover in vortex dimensionality. The vortex-dominated properties of high transition temperature superconductors with extremely high anisotropy (layered systems) are reasonably well described in the framework of the layered XY model which can be mapped onto the layered sine-Gordon model. For the latter we derive an exact renormalization group (RG) equation using Wegner's and Houghton's approach in the local potential approximation. The agreement of the UV scaling laws find by us by linearizing the RG equations with those obtained previously in the literature in the dilute gas approximation makes the improvement appearant which can be achieved by solving our RG equations numerically.Comment: 12 pages, no figures, to be published in Philos. Ma

    Renormalization of the Periodic Scalar Field Theory by Polchinski's Renormalization Group Method

    Get PDF
    The renormalization group (RG) flow for the two-dimensional sine-Gordon model is determined by means of Polchinski's RG equation at next-to-leading order in the derivative expansion. In this work we have two different goals, (i) to consider the renormalization scheme-dependence of Polchinski's method by matching Polchinski's equation with the Wegner-Houghton equation and with the real space RG equations for the two-dimensional dilute Coulomb-gas, (ii) to go beyond the local potential approximation in the gradient expansion in order to clarify the supposed role of the field-dependent wave-function renormalization. The well-known Coleman fixed point of the sine-Gordon model is recovered after linearization, whereas the flow exhibits strong dependence on the choice of the renormalization scheme when non-linear terms are kept. The RG flow is compared to those obtained in the Wegner-Houghton approach and in the dilute gas approximation for the two-dimensional Coulomb-gas.Comment: 14 pages, LaTeX, 1 figure; J. Phys. G (in press

    Renormalization-Group Analysis of the Generalized sine-Gordon Model and of the Coulomb Gas for d >= 3 Dimensions

    Get PDF
    Renormalization-group (RG) flow equations have been derived for the generalized sine-Gordon model (GSGM) and the Coulomb gas (CG) in d >= 3 of dimensions by means of Wegner's and Houghton's, and by way of the real-space RG approaches. The UV scaling laws determined by the leading-order terms of the flow equations are in qualitative agreement for all dimensions d >= 3, independent of the dimensionality, and in sharp contrast to the special case d = 2. For the 4-dimensional GSGM it is demonstrated explicitly (by numerical calculations), that the blocked potential tends to a constant effective potential in the infrared (IR) limit, satisfying the requirements of periodicity and convexity. The comparison of the RG flows for the three-dimensional GSGM, the CG, and the vortex-loop gas reveals a significant dependence on the renormalization schemes and the approximations used.Comment: 19 pages, 8 figure

    On the applicability of the layered sine-Gordon model for Josephson-coupled high-T_c layered superconductors

    Full text link
    We find a mapping of the layered sine-Gordon model to an equivalent gas of topological excitations and determine the long-range interaction potentials of the topological defects. This enables us to make a detailed comparison to the so-called layered vortex gas, which can be obtained from the layered Ginzburg-Landau model. The layered sine-Gordon model has been proposed in the literature as a candidate field-theoretical model for Josephson-coupled high-T_c superconductors, and the implications of our analysis for the applicability of the layered sine-Gordon model to high-T_c superconductors are discussed. We are led to the conjecture that the layered sine--Gordon and the layered vortex gas models belong to different universality classes. The determination of the critical temperature of the layered sine-Gordon model is based on a renormalization-group analysis.Comment: 7 pages, accepted for publication in J. Phys.: Condens. Matte

    Blow Flies (Calliphoridae) in Alaska

    Get PDF
    Several blow fly collections were made in the vicinity of Fairbanks between May 28 and June 14, 1948, and one large collection at Anchorage on August 9, 1948. All flies were caught in screen-wire fly traps baited with liver or dead salmon. The material was identified by D. G. Hall, Bureau of Entomology and Plant Quarantine, who also generously provided information concerning the possible importance of the various species of Alaskan blow flie

    Wave-function renormalization for the Coulomb-gas in Wegner-Houghton's RG method

    Full text link
    The RG flow for the sine-Gordon model is determined by means of the method of Wegner and Houghton in next-to-leading order of the derivative expansion. For small values of the fugacity this agrees with the well-known RG flow of the two-dimensional Coulomb-gas found in the dilute gas approximation and a systematic way of obtaining higher-order corrections to this approximation is given.Comment: 4 pages, 2 figure

    Generalized universality in the massive sine-Gordon model

    Get PDF
    A non-trivial interplay of the UV and IR scaling laws, a generalization of the universality is demonstrated in the framework of the massive sine-Gordon model, as a result of a detailed study of the global behaviour of the renormalization group flow and the phase structure.Comment: 9 pages, 7 figure

    Renormalization-Group Analysis of the Generalized Sine-Gordon Model and of the Coulomb Gas for D \u3e 3 Dimensions

    Get PDF
    Renormalization-group (RG) flow equations have been derived for the generalized sine-Gordon model (GSGM) and the Coulomb gas (CG) in d ≥ 3 of dimensions by means of the Wegner-Houghton method, and by way of the real-space RG approach. The UV scaling laws determined by the leading-order terms of the flow equations are in qualitative agreement for all dimensions d ≥ 3, independent of the dimensionality, and in sharp contrast to the special case d=2. For the 4-dimensional GSGM it is demonstrated explicitly (by numerical calculations) that the blocked potential tends to a constant effective potential in the infrared limit, satisfying the requirements of periodicity and convexity. The comparison of the RG flows for the three-dimensional GSGM, the CG, and the vortex-loop gas reveals a significant dependence on the renormalization schemes and the approximations used
    • …
    corecore