38 research outputs found

    Search for exotic physics in double-β decays with GERDA Phase II

    Get PDF
    A search for Beyond the Standard Model double-β\beta decay modes of76^{76}Ge has been performed with data collected during the Phase II of theGERmanium Detector Array (GERDA) experiment, located at Laboratori Nazionalidel Gran Sasso of INFN (Italy). Improved limits on the decays involvingMajorons have been obtained, compared to previous experiments with 76^{76}Ge,with half-life values on the order of 1023^{23} yr. For the first time with76^{76}Ge, limits on Lorentz invariance violation effects in double-β\betadecay have been obtained. The isotropic coefficienta˚of(3)\mathring{a}_\text{of}^{(3)}, which embeds Lorentz violation indouble-β\beta decay, has been constrained at the order of 10610^{-6} GeV. Wealso set the first experimental limits on the search for light exotic fermionsin double-β\beta decay, including sterile neutrinos.<br

    Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016

    Get PDF
    The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ∼ 20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ∼ 50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip

    Cost-effectiveness modelling in diagnostic imaging: a stepwise approach

    Get PDF
    Contains fulltext : 152079.pdf (publisher's version ) (Open Access)Diagnostic imaging (DI) is the fastest growing sector in medical expenditures and takes a central role in medical decision-making. The increasing number of various and new imaging technologies induces a growing demand for cost-effectiveness analysis (CEA) in imaging technology assessment. In this article we provide a comprehensive framework of direct and indirect effects that should be considered for CEA in DI, suitable for all imaging modalities. We describe and explain the methodology of decision analytic modelling in six steps aiming to transfer theory of CEA to clinical research by demonstrating key principles of CEA in a practical approach. We thereby provide radiologists with an introduction to the tools necessary to perform and interpret CEA as part of their research and clinical practice. KEY POINTS: * DI influences medical decision making, affecting both costs and health outcome. * This article provides a comprehensive framework for CEA in DI. * A six-step methodology for conducting and interpreting cost-effectiveness modelling is proposed

    Quantification of Respiratory Movement of the Aorta and Side Branches

    No full text
    Purpose: To assess and quantify the magnitude and direction of respiratory movement of the aorta and origins of its side branches. Methods: A quantitative 3-dimensional (3D) subtraction analysis of computed tomography (CT) scans during inspiration and expiration was performed to determine the respiratory geometric movements of the aorta and side branches in 60 patients. During breath-hold expiration and inspiration, 1-mm-thick CT slices of the aorta were acquired in unenhanced and contrast-enhanced scans. The datasets were compared using dedicated multiplanar reformation image subtraction software to determine the change in position of relevant anatomic sections, including the ascending thoracic aorta (AA), the origins of the brachiocephalic artery (BA) and left subclavian artery (LSA), the descending thoracic aorta (DTA) at the level of the tenth thoracic vertebra, as well as the origins of the celiac trunk, superior mesenteric artery, and the renal arteries. Results: Complex movement was visible during inspiration; the regions of interest in the thoracic aorta and side branches moved in the anterior, medial, and caudal directions compared with the expiration state. Mean 3D movement vectors (+/- standard deviation) were 8.9 +/- 3.6 mm (AA), 12.0 +/- 4.1 mm (BA), 11.1 +/- 3.9 mm (LSA), and 4.9 +/- 2.5 mm (DTA). Abdominal side branches moved in the caudal direction 1.3 +/- 1.1 mm. There was significantly less movement in the DTA compared to AA (

    Probability of receiving a high cumulative radiation dose and primary clinical indication of CT examinations: a 5-year observational cohort study

    No full text
    Objective High radiation exposure is a concern because of the association with cancer. The objective was to determine the probability of receiving a high radiation dose from CT (from one or more examinations within a 5-year period) and to assess the clinical context by evaluating clinical indications in the high-dose patient group. Design Observational cohort study. Effective radiation dose received from one or more CT examinations within a predefined 5-year calendar period was assessed for each patient. Setting Hospital setting. Participants All patients undergoing a diagnostic CT examination between July 2013 and July 2018 at the Maastricht University Medical Center. Primary and secondary outcome measures The primary outcome was the probability of receiving a high effective dose, defined as &gt;= 100 mSv, from one or more CT examinations within 5 years as derived from a time-to-event analysis. Secondary outcomes were the clinical indication for the initial scan of patients receiving a high effective dose. Results 100 672 CT examinations were performed among 49 978 patients including 482 (1%) who received a high radiation dose. The estimated probability of a high effective dose from a single examination is low (0.002% (95% CI 0.00% to 0.01%)). The 4.5-year probability of receiving a high cumulative effective dose was 1.9% (95% CI 1.6% to 2.2%) for women and 1.5% (95% CI 1.3% to 1.7%) for men. The probability was highest in age categories between 51 and 74 years. A total of 2711 (5.5%) of patients underwent more than six CT examinations, and the probability of receiving a high effective dose was 16%. Among patients who received a high effective dose, most indications (80%) were oncology related. Conclusions The probability of receiving a high radiation dose from CT examinations is small but not negligible. In the majority (80%) of high effective dose receiving patients, the indication for the initial CT scan was oncology related

    RECIST measurements in cancer treatment: is there a role for physician assistants? - A pilot study

    No full text
    Background: Decision making in cancer treatment is influenced by standardized RECIST measurements which are subjective to interobserver variability. Aim of this pilot study was to evaluate whether it is feasible to transfer the radiologist's task of RECIST measurements to a trained radiology physician assistant and whether this influences diagnostic performance. Methods: 177 lesions in twenty patients were measured on baseline and two follow-up CTs using RECIST 1.1: Arm A according to routine clinical practice where various radiologists read scans of the referred patients. Arm B according to the experimental setting where a radiology physician assistant performed RECIST measurements of target lesions defined by the radiologists on baseline scans. Performance and agreement were compared between groups. Results: Standard deviation between lesion measurements of arm A and B was four millimeters. Interobserver agreement comparing response category classification was substantial, kappa = 0.77 (95% CI: 0.66 - 0.87). Sensitivity and specificity for the radiology physician assistant for assessing progressive disease were 100% (95% CI: 61% - 100%) and 94% (95% CI: 81% - 98%) respectively. Conclusion: RECIST measurements performed by a paramedic are a feasible alternative to standard practice. This could impact the workflow of radiological units, opening ways to re-assigning radiologists' important, standardized but time consuming tasks to paramedics

    Xenon-enhanced dynamic dual-energy CT is able to quantify sinus ventilation using laminar and pulsating air-/gas flow before and after surgery: A pilot study in a cadaver model.

    No full text
    Background: Chronic rhinosinusitis is a common disease with a significant impact on the quality of life. Topical drug delivery to the paranasal sinuses is not efficient to prevent sinus surgery or expensive biologic treatment in a lot of cases as the affected mucosa is not reached. More efficient approaches for topical drug delivery are, therefore, necessary. In the current study, dual-energy CT (DECT) imaging was used to examine sinus ventilation before and after sinus surgery using a pulsating xenon gas ventilator in a cadaver head. Methods: Xenon gas was administered to the nasal cavity of a cadaver head with a laminar flow of 7 L/min and with pulsating xenon-flow (45 Hz frequency, 25 mbar amplitude). Nasal cavity and paranasal sinuses were imaged by DECT. This procedure was repeated after functional endoscopic sinus surgery (FESS). Based on the enhancement levels in the different sinuses, regional xenon concentrations were calculated. Results: Xenon-related enhancement could not be detected in most of the sinuses during laminar gas flow. By superimposing laminar flow with pulsation, DECT imaging revealed a xenon wash-in and wash-out in the sinuses. After FESS, xenon enhancement was immediately seen in all sinuses and reached higher concentrations than before surgery. Conclusion: Xenon-enhanced DECT can be used to visualize and quantify sinus ventilation. Pulsating air-/gas flow was superior to laminar flow for the administration of xenon to the paranasal sinuses. FESS leads to successful ventilation of all paranasal sinuses

    Fusion Guidance in Endovascular Peripheral Artery Interventions: A Feasibility Study

    No full text
    This study was designed to evaluate the feasibility of endovascular guidance by means of live fluoroscopy fusion with magnetic resonance angiography (MRA) and computed tomography angiography (CTA). Fusion guidance was evaluated in 20 endovascular peripheral artery interventions in 17 patients. Fifteen patients had received preinterventional diagnostic MRA and two patients had undergone CTA. Time for fluoroscopy with MRA/CTA coregistration was recorded. Feasibility of fusion guidance was evaluated according to the following criteria: for every procedure the executing interventional radiologists recorded whether 3D road-mapping provided added value (yes vs. no) and whether PTA and/or stenting could be performed relying on the fusion road-map without need for diagnostic contrast-enhanced angiogram series (CEAS) (yes vs. no). Precision of the fusion road-map was evaluated by recording maximum differences between the position of the vasculature on the virtual CTA/MRA images and conventional angiography. Average time needed for image coregistration was 5 +/- A 2 min. Three-dimensional road-map added value was experienced in 15 procedures in 12 patients. In half of the patients (8/17), intervention was performed relying on the fusion road-map only, without diagnostic CEAS. In two patients, MRA roadmap showed a false-positive lesion. Excluding three patients with inordinate movements, mean difference in position of vasculature on angiography and MRA/CTA road-map was 1.86 +/- A 0.95 mm, implying that approximately 95 % of differences were between 0 and 3.72 mm (2 +/- A 1.96 standard deviation). Fluoroscopy with MRA/CTA fusion guidance for peripheral artery interventions is feasible. By reducing the number of CEAS, this technology may contribute to enhance procedural safety
    corecore