1,643 research outputs found

    The 32nd CDC: Robust stabilizer synthesis for interval plants using Nevanlina-pick theory

    Get PDF
    The synthesis of robustly stabilizing compensators for interval plants, i.e., plants whose parameters vary within prescribed ranges is discussed. Well-known H(sup infinity) methods are used to establish robust stabilizability conditions for a family of plants and also to synthesize controllers that would stabilize the whole family. Though conservative, these methods give a very simple way to come up with a family of robust stabilizers for an interval plant

    Force Distributions in Frictional Granular Media

    Get PDF
    We report a joint experimental and theoretical investigation of the probability distribution functions (pdf's) of the normal and tangential (frictional) forces in amorphous frictional media. We consider both the joint pdf of normal and tangential forces together, and the marginal pdf's of normal forces separately and tangential forces separately. A maximum entropy formalism is utilized for all these cases after identifying the appropriate constraints. Excellent agreements with both experimental and simulational data are reported. The proposed joint pdf (which appears new to the literature) predicts giant slip events at low pressures, again in agreement with observations.Comment: 13 pages, 15 figure

    Negative forms and path space forms

    Full text link
    We present an account of negative differential forms within a natural algebraic framework of differential graded algebras, and explain their relationship with forms on path spaces.Comment: 12 pp.; the Introduction has been rewritten and mention of cohomology dropped in Proposition 3.2; material slightly reorganize

    Theoretical Study of Physisorption of Nucleobases on Boron Nitride Nanotubes: A New Class of Hybrid Nano-Bio Materials

    Full text link
    We investigate the adsorption of the nucleic acid bases, adenine (A), guanine (G), cytosine (C), thymine (T) and uracil (U) on the outer wall of a high curvature semiconducting single-walled boron nitride nanotube (BNNT) by first principles density functional theory calculations. The calculated binding energy shows the order: G>A\approxC\approxT\approxU implying that the interaction strength of the (high-curvature) BNNT with the nucleobases, G being an exception, is nearly the same. A higher binding energy for the G-BNNT conjugate appears to result from a stronger hybridization of the molecular orbitals of G and BNNT, since the charge transfer involved in the physisorption process is insignificant. A smaller energy gap predicted for the G-BNNT conjugate relative to that of the pristine BNNT may be useful in application of this class of biofunctional materials to the design of the next generation sensing devices.Comment: 17 pages 6 figure

    Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    Full text link
    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states--the quantum states of light emitted by a laser--has immense practical importance. However, quantum mechanics imposes a fundamental limit on how well different coher- ent states can be distinguished, even with perfect detectors, and limits such discrimination to have a finite minimum probability of error. While conventional optical receivers lead to error rates well above this fundamental limit, Dolinar found an explicit receiver design involving optical feedback and photon counting that can achieve the minimum probability of error for discriminating any two given coherent states. The generalization of this construction to larger sets of coherent states has proven to be challenging, evidencing that there may be a limitation inherent to a linear-optics-based adaptive measurement strategy. In this Letter, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multi-copy quantum hypotheses (arXiv:1201.6625) and properties of coherent states. Furthermore, our construction is reusable, composable, and applicable to designing quantum-limited processing of coherent-state signals to optimize any metric of choice. As illustrative examples, we analyze the performance of discriminating a ternary alphabet, and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.Comment: 9 pages, 2 figures; v2 Minor correction

    Successful inoculation of Artemia and production of cysts in the coastal saltpans of Bangladesh II

    Get PDF
    Bangladesh has no naturally occurring Artemia, and all the growing shrimp hatcheries of the country depend entirely on import of cysts from foreign countries. Following successful inoculation of Artemia and production of cysts for the first time in this country in a coastal saltpan (at Chanua, Banskhali) by the senior author (in 1989-90), a similar second attempt was made under this programme in a saltpan (1000 m super(2)) of Demoshia, Chakaria, Cox's Bazar, Bangladesh between January and April 1992. A total of 1639.9 g (dry weight) of cysts (i.e. 5.46 kg DW/ha/month) have been produced using the Red Jungle Brand, whereas the previous attempt obtained 517 g of cysts (i.e. 2.07 kg DW/ha/month) using the Great Salt Lake Brand

    Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints

    Full text link
    We discuss data analysis techniques that can be used in the search for gravitational wave bursts from cosmic strings. When data from multiple interferometers are available, we describe consistency checks that can be used to greatly reduce the false alarm rates. We construct an expression for the rate of bursts for arbitrary cosmic string loop distributions and apply it to simple known solutions. The cosmology is solved exactly and includes the effects of a late-time acceleration. We find substantially lower burst rates than previous estimates suggest and explain the disagreement. Initial LIGO is unlikely to detect field theoretic cosmic strings with the usual loop sizes, though it may detect cosmic superstrings as well as cosmic strings and superstrings with non-standard loop sizes (which may be more realistic). In the absence of a detection, we show how to set upper limits based on the loudest event. Using Initial LIGO sensitivity curves, we show that these upper limits may result in interesting constraints on the parameter space of theories that lead to the production of cosmic strings.Comment: Replaced with version accepted for publication in PR

    Linear optics and photodetection achieve near-optimal unambiguous coherent state discrimination

    Get PDF
    Coherent states of the quantum electromagnetic field, the quantum description of ideal laser light, are prime candidates as information carriers for optical communications. A large body of literature exists on their quantum-limited estimation and discrimination. However, very little is known about the practical realizations of receivers for unambiguous state discrimination (USD) of coherent states. Here we fill this gap and outline a theory of USD with receivers that are allowed to employ: passive multimode linear optics, phase-space displacements, auxiliary vacuum modes, and on-off photon detection. Our results indicate that, in some regimes, these currently-available optical components are typically sufficient to achieve near-optimal unambiguous discrimination of multiple, multimode coherent states.Comment: 18 pages, 10 figures, and 2 tables. Appendices included. Additional references added. Comments welcome
    • …
    corecore