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Coherent states of the quantum electromag-
netic field, the quantum description of ideal
laser light, are prime candidates as information
carriers for optical communications. A large
body of literature exists on their quantum-
limited estimation and discrimination. How-
ever, very little is known about the practi-
cal realizations of receivers for unambiguous
state discrimination (USD) of coherent states.
Here we fill this gap and outline a theory of
USD with receivers that are allowed to em-
ploy: passive multimode linear optics, phase-
space displacements, auxiliary vacuum modes,
and on-off photon detection. Our results in-
dicate that, in some regimes, these currently-
available optical components are typically suf-
ficient to achieve near-optimal unambiguous
discrimination of multiple, multimode coher-
ent states.

1 Introduction
Quantum mechanics places fundamental limits on the
distinguishability of non-orthogonal quantum states.
This fact underpins applications in quantum informa-
tion science and technology, most notably in quantum
cryptography [1], and constrains the performance of
quantum sensors [2], quantum communications [3, 4],
and of probabilistic algorithms in computation [5].
However, quantum mechanics also provides the tools
to identify these limits and approach them through
the design of practical receivers [6–8]. Within the
framework of optical quantum information science
and technology, coherent states of the electromagnetic
field play a prominent role as information carriers in
terrestrial and space-based quantum networks [4, 9].
This is essentially since these states are relatively easy
to prepare and control experimentally, and are robust
to loss. They are in fact the only pure states that have
a classical limit, yet they exhibit fundamental quan-
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tum properties when sufficiently attenuated [10, 11].
This paper focuses on the quantum-limited detec-

tion of coherent states. We present a few explicit and
practical schemes for unambiguous state discrimina-
tion (USD) of coherent states. In particular, instead
of considering global bounds, our goal is to design
practical receivers that can be realized with linear
optics and on-off photodetection. For brevity, we re-
fer to them as linear receivers. In some cases, we
show that linear receivers nearly saturate the global
bounds, which can be computed using the general the-
ory of USD [12–21].

A well-designed quantum receiver combines prac-
ticality with high performance, where the latter is
quantified through a suitable task-dependent figure
of merit. In ambiguous state discrimination (ASD),
the receiver is designed to always provide an output,
with the goal of minimizing the average error proba-
bility. The latter is ultimately limited by the Yuen-
Kennedy-Lax (YKL) conditions [22] (which reduces to
the Helstrom bound for two states [23]). Alternative
figures of merit are preferred for quantum key dis-
tribution [24–27] and quantum digital signatures [28],
where an exact state identification improves the trans-
fer of secure information that cannot be forged or re-
pudiated. This framework is known as USD, where
the receiver either identifies the state without error,
or outputs an inconclusive result, and the goal is to
minimize the average probability of such inconclusive
result [12, 13]. The ultimate bounds to USD can be
computed using the theory of Peres and Terno [14] or
that of Sun et al. [20] and Bergou et al. [21], which in
a sense provide the analogue for the YKL conditions
for USD. These bounds can be computed efficiently
through semidefinite programming [15], and some-
times allow for an exact analytical solution [20, 21].
However, experimentally attaining the bounds, in par-
ticular for the discrimination of coherent states, may
require high non-linearities that may be un-accessible
even with state-of-the-art or near-term future optical
technologies.

There is a wide body of literature devoted to estab-
lishing the global bound for USD for different families

Accepted in Quantum 2023-05-11, click title to verify. Published under CC-BY 4.0. 1

https://quantum-journal.org/?s=Linear%20optics%20and%20photodetection%20achieve%20near-optimal%20unambiguous%20coherent%20state%20discrimination&reason=title-click
https://quantum-journal.org/?s=Linear%20optics%20and%20photodetection%20achieve%20near-optimal%20unambiguous%20coherent%20state%20discrimination&reason=title-click
https://orcid.org/0000-0002-6167-8224
https://orcid.org/0000-0002-3528-7473
https://orcid.org/0000-0002-2581-4380
https://orcid.org/0000-0002-5227-4009
mailto:jsmdrsidhu@gmail.com
mailto:cosmo.lupo@poliba.it


of quantum states [16–21]. However, despite these
advances, very little is known about practical USD
receivers for coherent states, and whether they can
achieve the global bounds [26, 29–32], with most of the
available works focusing on phase-shift keying. For
classical communications using coherent-state modu-
lation, a joint quantum measurement acting on the
received coherent-state code word that performs USD
achieves the optimal communication capacity allowed
by quantum mechanics [33], known as the Holevo ca-
pacity [34]. Furthermore, when acting on a finite-
length inner code comprised of tensor product of co-
herent states, the USD measurement can even at-
tain a higher channel capacity—Shannon capacity of
the super channel induced by the inner code and the
receiver—compared to the optimal ASD measurement
that minimizes the average probability of error of
choosing between the modulated-received inner code
words [35–37]. For phase-shift encoded signals, the
optimal USD measurement in the limit of small pho-
ton numbers consists of mode-wise displacement op-
erations followed by photon-number-resolving detec-
tors [26]. For the so-called binary phase-shift-keying
(BPSK) alphabet, this scheme is sufficient to attain
the optimal USD performance without adaptive pre-
detection displacements [38]. Post-selecting the mea-
surement result can further reduce the error rate for
a fixed probability of inconclusive results [39]. For
single-mode coherent state constellations with more
than two states, there is a substantial gap between
the optimal USD performance and non-adaptive re-
ceivers [26, 29]. An adaptive receiver for quadrature
phase-shift-keying (QPSK) has demonstrated an im-
provement to correct state identification [30] in an
effort to close this gap.

Here we outline a general theory of USD of coher-
ent states with a receiver that leverages only limited
resources, such as multi-mode linear passive optics,
phase-space displacement operations, auxiliary vac-
uum modes, and mode-wise on-off photon detection.
We apply our theory to a number of examples of dif-
ferent coherent-state modulations, using as a bench-
mark the global bounds on USD. The latter are com-
puted explicitly using the theory of Refs. [20, 21]. We
demonstrate that in some regimes this practical, yet
restricted, set of physical operations is typically suffi-
cient to deliver near-optimal performance. This work
establishes a theoretical framework to understand and
master the design of receivers to enable near-optimal
USD of coherent states.

1.1 Summary of results
Previous works in USD have primarily focused on
developing efficient computational methods to deter-
mine the global bounds [14, 15, 21], providing nec-
essary and sufficient conditions that define optimal
measurement schemes [16, 17, 20], or considering spe-

cific examples of quantum states to construct mea-
surement operators [18, 19, 31, 40, 41].

Here we focus on the design of practical receivers.
We introduce a family of receivers based on multi-
mode linear optics and on-off photodetection. A par-
ticular strength of these receivers is that they do not
require complex adaptive strategies or non-linear op-
tics, which may be challenging to implement. Our
work readily addresses the optimal design to mini-
mize the average probability of an inconclusive event.
Further, for multimode coherent states, we provide
intuitive insights into how the performance of linear
receivers depends on the number of modes and on the
number of photons detected. This intuition is useful
to provide an understanding of how to experimentally
realize improvements when using just linear optics.

We test our receiver design on randomly generated
multimode coherent states, showing that linear re-
ceivers provide near-optimal performance for a range
of coherent states. Non-typical, highly-degenerate
constellations of coherent states may necessitate co-
incidence measurements to achieve USD. We also ad-
dress an alternative figure of merit, the communica-
tion capacity, showing that linear receivers achieve
near-optimal performance both in the asymptotic
regime and for finite block length.

Table 1 provides a high-level summary of the dif-
ferent receiver designs that we introduce in this work,
along with their optimal performance bounds, con-
ditions required to saturate these bounds, and how
the designs can be adapted to handle general codes.
Our class 1 receivers are comprised of vacuum aux-
iliaries, LOP transformations, and on-off photon de-
tection and are capable of discriminating any full-rank
codebook. Our class 2 receivers improve the perfor-
mance beyond class 1 by using additional mode-wise
displacement operations and also extend their appli-
cations to codebooks with single degeneracy. Finally,
class 3 receivers use the same resources as class 2 but
measure detection events across multiple modes. Our
results significantly advance the field by clarifying the
receiver designs that are both near-optimal for many
codes and immediately accessible with current tech-
nologies.

1.2 Outline
We begin in Section 2 by introducing our notation and
the basic theoretical tools to describe our receivers
based on linear optics and photodetection. We pro-
vide qualitative bounds that introduce key insights
into the performance of different detection schemes in
Section 3. Then, in Section 4 we establish a theory to
formalize in a quantitative way the problem of USD
with limited resources. In Section 5, we discuss appli-
cations of linear receivers to different constellations of
coherent states, including the pulse-position modula-
tion codes, random codes, and non-typical degenerate
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Receiver Explicit construction Optimal performance and assumptions

Class 1: single-detection
events (Sec. 4)

Fig. 1: Vacuum auxiliaries, LOP
transformations, and on-off

photon detection

Eq. (34): requires linearly independent
vectors (rank(R) = c)

Class 2: single-detection
events with displacement

(Sec. 4.2)

Fig. 2: Vacuum auxiliaries, LOP
transformations, displacement,
and on-off photon detection

Eq. (35): vectors at most singularly
degenerate (rank(R) ≥ c− 1)

Class 3:
double-detection events

(Sec. 4.3)

Fig. 3: Vacuum auxiliaries, LOP
transformations, displacement,
and on-off photon detection

Eq. (47): vectors at least doubly degenerate
(rank(R) ≤ c− 2)

Globally optimal receiver
(reviewed in App. A

and B)

May require non-linearities and
adaptive strategies Eq. (77) or Eq. (81)

Table 1: Summary of receiver designs for USD of codes comprised of c, m-mode coherent states |αj〉 , j ∈ [1, c]. Each class
implements on-off photodetection and differs in either the detection strategy or resources used. Note that class 3 receivers
can readily be generalized to code words with arbitrary degeneracy by implementing multimode detection events (greater than
two). The performance for each class of our linear optical receivers is defined through an optimization problem. We developed
a numerical optimizer to address each optimization and derive the optimal solutions. Intuition into the performance of each
receiver is provided in section 3. Note the construction of each receiver class uses linear optics that can be readily implemented,
which is in contrast to the globally optimal scenario summarised in the final row.

codes with single and double degeneracy. These appli-
cations demonstrate the strengths of linear receivers
when benchmarked against the global bound for USD.
Finally, conclusions and open questions are provided
in Section 6.

2 Linear optics in phase space
Before delving into the details of the USD receivers,
we first need to introduce our notation and a few ba-
sic elements from the toolbox of linear optics [42].
Consider a collection of m bosonic modes with an-
nihilation and creation operators {aj , a†j}, for j =
1, . . . ,m, satisfying the canonical commutation rela-
tions, [aj , a†j′ ] = δjj′ . These modes may represent a
number of physical degrees of freedom, e.g., polariza-
tion, transverse wave vector, time of arrival, orbital
angular momentum, as long as they are all degenerate
in frequency. A coherent state on mode j is denoted
as |α〉j and is characterized by its complex amplitude
α. We have

|α〉j = e−
1
2 |α|

2
∞∑
k=0

αk√
k!
|k〉j , (1)

where

|k〉j = 1√
k!

(a†j)
k|0〉 (2)

is the Fock state with k photons on mode j, and |0〉
is the vacuum state. A multimode coherent state is
the direct product of m coherent states:

|α〉 =
m⊗
j=1
|αj〉j . (3)

Such a state is uniquely identified by its amplitude
vector α = (α1, α2, . . . , αm). As |αj |2 is the mean
photon number in mode j,

n := |α|2 =
m∑
j=1
|αj |2 (4)

is the total mean photon number in the state.
The fundamental mathematical structure in quan-

tum mechanics is the scalar product defined in the
Hilbert space. The scalar product between two mul-
timode coherent states |α〉 and |β〉 reads

〈α|β〉 = exp
[
−1

2 |α|
2 − 1

2 |β|
2 +α∗ · β

]
, (5)

where

α∗ · β =
m∑
j=1

α∗jβj . (6)

is the scalar product between the amplitude vectors.
The Hilbert-space scalar product is invariant under
the action of general unitary transformations in the
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Hilbert space and is the central mathematical struc-
ture underlying the global bounds on USD [14]. Note
that this global bound is known to be achieved by
some measurements. However, for generic states, we
do not expect any particular form for such optimal
measurement.

Since our focus here is on achieving USD using
a particular subset of measurements, which includes
linear optics and photodetection, the Hilbert-space
scalar product may not be the most useful mathemati-
cal tool. Therefore, we consider an alternative notion
of scalar product that seems more naturally suited
to describe quantum mechanics under a restricted set
of allowed measurements. To identify this alterna-
tive scalar product, we need to consider in more de-
tail the set of unitary linear optics operations, which
preserve the total mean photon number. These op-
erations identify the group of Linear Optical Passive
(LOP) unitary transformations [43, 44].

LOP unitaries map coherent states into coherent
states. The components of the amplitude vector
transform as follows,

αj →
m∑
k=1

Ujkαk (7)

where [Ujk] is a m × m unitary matrix. Multimode
LOP transformations can be implemented physically
by combining linear optics elements as beam splitters
and phase shifters, and are mathematically described
as unitary matrices. Given a unitary matrix descrip-
tion of the LOP transformations, there are known, ef-
ficient procedures to simulate it as a network of beam
splitters and phase shifters [45–47].

Note that the scalar product between amplitude
vectors in Eq. (6) is invariant under the action of
LOP unitaries. Therefore, given a pair of m-mode
coherent states |α〉, |β〉, with amplitude vectors α =
(α1, α2, . . . , αm) and β = (β1, β2, . . . , βm), we define
the phase-space scalar product as

(α,β) =
m∑
j=1

α∗jβj . (8)

The phase-space scalar product will play in our anal-
ysis a similar role played by the Hilbert-space scalar
product in the theory of USD developed by Peres and
Terno [14], and it will guide us in designing our linear
receivers for USD of coherent states.

In the rest of the paper, we will consider examples
of codes comprising c ≥ 2 m-mode coherent states,
identified by c amplitude vectors α1, α2, . . . , αc. We
can arrange these vectors into a rectangular matrix

with c rows and m columns,

R =



α1

α2

...

αc


=



α1
1 α1

2 . . . α1
m

α2
1 α2

2 . . . α2
m

...
...

...
...

αc1 αc2 . . . αcm


. (9)

It is well known that pure states can be unambigu-
ously discriminated if and only if they are linearly
independent [16]. In our setting, where we only al-
low for limited resources, this condition needs to be
modified. As a matter of fact, we need to look at
the notion of linear independence in phase space, not
in the Hilbert space. This alternative notion of lin-
ear independence, which we simply call phase-space
linear independence, is strictly related to the phase-
space scalar product introduced above. Therefore, we
will say that the given coherent states are linear inde-
pendent in phase space if their associated amplitude
vectors are linear independent, i.e., if the matrix R in
Eq. (9) has maximum rank. Note that this is possible
only if c ≤ m. Below we describe a scheme for USD
of coherent states that works when the associated R-
matrix is full rank.

In general, our receivers will also exploit a number
of auxiliary modes. We will then introduce m′ addi-
tional optical modes (as we see below, it is sufficient
to use m′ ≤ m auxiliary modes), characterized by the
canonical operators {am+j , a

†
m+j}, for j = 1 to m′.

The totality of m + m′ will be mixed at a LOP uni-
tary over m + m′ modes, which is represented by a
unitary matrix of size m + m′. If all modes are ini-
tially prepared in a coherent state, with amplitude
vector α = (α1, . . . , αm, αm+1, . . . αm+m′), then the
output is also a coherent state, with amplitude vec-
tor β = (β1, . . . , βm, βm+1, . . . βm+m′), where the ith
output amplitude reads

βi =
m+m′∑
j=1

Uijαj =
m∑
j=1

Mijαj +
m+m′∑
j=m+1

Nijαj , (10)

whereM and N are submatrices of U , withMij = Uij
for j = 1, . . . ,m, and Nij = Uij for j = m+1, . . . ,m+
m′. For our applications, we are often interested in
the case where the m′ ancillary modes are prepared
in the vacuum state, i.e., αm+j = 0. In this setting,
we simply have

βi =
m∑
j=1

Mijαj . (11)

When the output coherent state is measured by
mode-wise photodetection, for any i we will have a
certain probability of detecting a photon in the ith
mode. This probability is readily computed as

Pi(α, U) = 1− exp
[
−|Mi ·α|2

]
, (12)
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where

Mi = (Mi1,Mi2, . . . ,Mim) (13)

and

Mi ·α =
m∑
j=1

Mijαj . (14)

The photon detection probability in Eq. (12) is the
key quantity to characterize our linear receivers, as
we discuss in Section 4.

Finally, we recall that the displacement operator,
denoted as D(γ), maps a coherent state into a coher-
ent state with a displaced amplitude:

D(γ)|α〉 = |α+ γ〉 . (15)

In the m-mode case, the displacement operator is
identified by a complex displacement vector, γ =
(γ1, γ2, . . . , γm), such that

D(γ)|α〉 = |α+ γ〉 , (16)

where α + γ = (α1 + γ1, α2 + γ2, . . . , αm + γm) and
D(γ) = D(γ1)⊗D(γ2)⊗ · · ·D(γm).

3 Qualitative analysis of linear re-
ceivers for USD of coherent states
This work addresses the following general question:
Given a collection of c, m-mode coherent states |αj〉,
with amplitude vectors αj = (αj1, α

j
2, . . . , α

j
m) and

prior probabilities pj , is it possible to discriminate
them unambiguously using linear optics, m′ auxiliary
vacuum modes, and mode-wise photodetection? In
this Section, we provide a qualitative answer to this
question. These qualitative results will give some in-
sight into the numerical analysis discussed later in the
paper.

Consider a set of m-mode coherent states with n
mean photon number. If we use m′ ancillary vacuum
modes, then the mean photon number per mode is
ν = n/(m+m′). These states are processed through
a LOP unitary, which preserves the photon number,
and then measured by mode-wise photodetection. On
average, the probability of a single photodetection
event in a given mode is expected to be about

1− e−fν . (17)

where the factor f depends on the details of the in-
put states and LOP transformation applied. For weak
signals, it is unlikely to observe more than one pho-
todetection event. Therefore, we cannot discriminate
more than m+m′ states, i.e., no more than the num-
ber of signal plus auxiliary modes, and the receiver
yields an inconclusive result every time no photon is
detected. This happens with probability

P0 = e−fν(m+m′) = e−fn = 1− fn+O(n2) . (18)

Therefore, we expect the probability of an inconclu-
sive event to decrease linearly with n for n� 1. This
probability can be further decreased if instead of vac-
uum auxiliary modes we use auxiliary coherent states.
In fact, this would increase the mean photon num-
ber from n to n′ > n. This strategy is equivalent to
introducing phase-space displacement in the pool of
allowed resources [48]. In Section 5.3, see Fig. 4(a)
in particular, we will show that this qualitative be-
haviour is confirmed quantitatively, both with and
without phase-space displacement.

For brighter coherent states, or when the first order
term in n vanishes, we need to consider joint detection
events on pairs of modes. In this case, the number of
distinct outcomes is (

m+m′

2

)
, (19)

which gives the maximum number of states that can
be unambiguously discriminated by observing coinci-
dence detection on two modes. From Eq. (17), and
recalling that a multimode coherent state is a prod-
uct state, see Eq. (3), we obtain the probability of a
coincidence

(1− e−fν)2 . (20)

By ignoring joint detection events in more than two
modes, the probability of obtaining an inconclusive
result is

P0 = e−fν(m+m′) (21)

+ (m+m′)e−fν(m+m′−1) (1− e−fν)
= 1−

(
m+m′

2

)
f2ν2 +O(ν3) . (22)

Recalling that ν = n/(m+m′), we obtain

P0 = 1− 1
2
m+m′ − 1
m+m′

f2n2 +O(n3) (23)

' 1− 1
2f

2n2 +O(n3) . (24)

In this case, the probability of the inconclusive event
decreases quadratically with n and, for m+m′ large
enough, is essentially independent of the number of
modes and ancillas. As for the previous case, using
coherent states ancillas instead of vacuum ones, we
may further decrease P0, as this is equivalent to re-
placing n with n′ > n. This qualitative result will be
confirmed by the quantitative analysis of Section 5.6,
see Fig. 7(b) in particular, where we will discuss ex-
amples of degenerate codes where the linear term in
Eq. (18) vanishes.

In principle, a similar qualitative analysis can be
applied to USD schemes based on an arbitrary number
of joint detection events. We naturally expect that
events of joint detection of nd photons will contribute
to P0 with a term proportional to nnd . However, in
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this work, we only discuss receivers based on single
and double-detection events. In the following Section,
we will focus on photodetection events on at most one
mode, and provide quantitative analysis and explicit
USD schemes. Later in Section 5.6 we will consider
an example of USD based on joint detection on two
modes.

4 Explicit schemes for USD of coher-
ent states
Below we present three schemes for linear receivers.
The first two, in Sections 4.1 and 4.2, exploit a sin-
gle detection event to achieve USD of coherent states.
The third scheme in Section 4.3 exploits double de-
tection events. These schemes are not necessarily op-
timal for the given resources, however, we show that
they are optimal or near-optimal in a number of in-
stances.

4.1 Single detection events
We now introduce an explicit scheme for USD of
multimode coherent states, based on single photo-
detection events. Consider a set of c coherent states
over m modes, identified by the amplitude vectors
α1, α2, . . . , αc, where αj = (αj1, α

j
2, . . . , α

j
m). In

order to discriminate these states, we first introduce
m′ auxiliary vacuum modes, then mix them on a LOP
transformation identified by the (m+m′)× (m+m′)
unitary matrix U , and finally apply mode-wise on-off
photodetection. This setup is shown schematically in
Fig. 1. As recalled in Section 2, the probability that,
given the state |αj〉 in input, a photon is detected on
mode i in output, is

Pi(αj , U) = 1− exp
[
−|Mi ·αj |2

]
, (25)

where the vectorsMi are determined by the elements
of the matrix U as discussed in Section 2.

If we want to achieve USD using the information
obtained from a single photodetection event in one of
the output modes, then it is obvious that we need to
impose that the input states are in one-to-one corre-
spondence with the output modes. Without loss of
generality, this means that for the jth state in input
all the output modes are in the vacuum except the
jth mode. That is, the matrix U needs to be chosen
in such a way that

Pj(αj , U) ≥ 0 , (26)
Pi(αj , U) = 0 for i 6= j . (27)

Expressed in terms of the vectors Mi, this condition
reads

Mi ·αj = δijMi ·αj . (28)

...

...

...

...

|αj
1〉

|αj
m〉

|0〉m+1

|0〉m+m′

0

1

0

0

LOP

Figure 1: Linear receiver design, based on LOP unitary trans-
formations and mode-wise on-off photodetection for USD of
coherent states. The input coherent states are distributed
across m input modes with m′ vacuum auxiliary modes.
Note that the LOP unitaries can be efficiently implemented
through a network of beam splitters and phase shifters [45–
47].

We note that a non-zero matrix M that solves these
equations exists if and only if the amplitude vectors
are linearly independent, i.e., the matrix R in Eq. (9)
is full rank 1.

The conditions in Eq. (28) ensure that the detection
of a photon in output mode j unambiguously identi-
fies the coherent state |αj〉 in input. Otherwise, no
conclusion can be drawn in the event that no photon
is detected in any of the output modes. This is the in-
conclusive event. If the input coherent state |αj〉 has
probability pj , then the average probability of the in-
conclusive event is

P0 =
c∑
j=1

pj exp [−|Mj ·αj |2] . (29)

Our goal is to design an explicit receiver that mini-
mizes this probability. This corresponds to perform-
ing an optimization on the c×m matrix M , keeping
in mind that the latter is by construction a subma-
trix of a larger unitary matrix. This latter condition
is expressed by the matrix inequality

M†M ≤ I , (30)

where I is the identity matrix (see Appendix C for
a derivation of this condition). In solving the con-
strained optimization, we parameterize the elements
of the matrix M as

Mij =
√
ki vij , (31)

1Equation (28) emerges in our discussion of linear USD re-
ceivers. This condition plays the same role as Eq. (73) which
appears in the general theory of USD, see for example the work
of Peres and Terno [14]. Notably, the two equations are for-
mally equivalent upon replacing the Hilbert-space scalar prod-
uct with the phase-space scalar product introduced in Section
2. In this sense, our theory is a modification of the approach
of Peres and Terno, but it is defined in phase space instead of
the Hilbert space.
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where ki ≥ 0 are c non-zero coefficients, and vij are
the components of c unit vectors

vi = (vi1, . . . , vim) , (32)

for i = 1, . . . , c. The unit vectors vi are proportional
to the vectors Mi, therefore condition (28) becomes

vi ·αj = δijvi ·αj . (33)

In conclusion, using this parameterization, the op-
timal linear receiver is determined by solving the con-
strained optimization:

minimize
k1, . . . , kc

c∑
j=1

pj exp
[
−kj

∣∣vj ·αj∣∣2] ,
subject to vi ·αj = δijvi ·αj ,

Mij =
√
ki vij ,

M†M ≤ I .

(34)

The minimal value represents the minimum proba-
bility of obtaining an inconclusive event for distin-
guishing the given set of coherent states using only
vacuum auxiliary modes, LOP unitaries, and on-off
photodetection. This value can be compared to the
global bound obtained when general operations and
measurements are allowed, which can be computed
analytically or numerically using results already avail-
able in literature [21].

Finally, we remark that the optimization problem
(34) is not explicitly dependent on the number of aux-
iliary modes m′. However, once an optimal form for
the matrix M is obtained, one needs to find a unitary
matrix that extends it. In general, such a matrix ex-
ists only if m′ is chosen sufficiently large. However,
one can assume m′ ≤ m without loss of generality.
An explicit construction is given in Appendix C.

4.2 Phase-space displacement improves USD

Better USD schemes, i.e., with a lower probability
of the inconclusive event, can be obtained by enlarg-
ing the set of allowed resources. Here we describe
a USD scheme obtained by adding the operation of
phase-space displacement. We consider a setup where
multimode displacement is first applied to the input
modes, followed by the LOP unitary and mode-wise
photodetection. This is shown in Fig. 2.

The optimal setup is then obtained by minimizing
the probability of the inconclusive event, where now
there are m additional complex degrees of freedom,
corresponding to the components of the displacement

...

...

...

...

|αj
1〉

|αj
m〉

|0〉m+1

|0〉m+m′

D(γ1)

D(γm)

0

1

0

0

LOP

Figure 2: Linear receiver with improved performance, em-
ploying phase-space displacement operations.

vector γ:

minimize
k1, . . . , kc,γ

c∑
j=1

pj exp
[
−kj

∣∣vj · (αj + γ
)∣∣2] ,

subject to vi · (αj + γ) = δijvi ·
(
αj + γ

)
,

Mij =
√
ki vij ,

M†M ≤ I .
(35)

The examples of Section 5 will show that the intro-
duction of phase-space displacement may improve the
performance of USD substantially.

As we noted above, the constraint

vi · (αj + γ) = δijvi ·
(
αj + γ

)
(36)

can be satisfied if and only if the displaced amplitude
vectors βj = αj + γ are linearly independent. The
use of displacement operations has the added value
of casting a linearly-dependent system with single de-
generacy 2 into an independent one. This extends the
range of coherent states that can be discriminated un-
ambiguously. To see this, consider a linearly depen-
dent set of coherent states with c ≤ m, and rank-
deficient R matrix with rank(R) = c− 1. The matrix
can be made full rank by adding to each row a linear
independent vector γ. The new matrix,

R1 =



α1 + γ

α2 + γ
...

αc + γ


, (37)

has full rank and represents the set of displaced co-
herent states.

2We call degenerate code a set of coherent states whose am-
plitude vectors are linearly dependent in phase space. There-
fore, the associated R matrix is not full rank. We say that the
code has single degeneracy if the rank of the R matrix is one
unit below the maximum value, and has double degeneracy if
it is two units below the maximum value.

Accepted in Quantum 2023-05-11, click title to verify. Published under CC-BY 4.0. 7



Displacement also comes to the rescue when the
number of states is larger than the number of modes,
in the case c = m+ 1 and rank(R) = c− 1. To make
the matrix full rank, we first add one auxiliary mode,
then displace the m+1 modes by (γ, γm+1). The new
matrix reads

R2 =



α1 + γ γm+1

α2 + γ γm+1

...
...

αc + γ γm+1


, (38)

and has rank c for suitable choices of (γ, γm+1). An
explicit example of this method is presented in Section
5.7.

4.3 Double detection events
When the amplitude vectors are not linearly indepen-
dent and the matrix R has multiple degeneracies, aux-
iliary modes and phase-space displacements are not
sufficient to make the matrix full rank. Note that the
only way to do that is to use a state-dependent dis-
placement, which would imply some prior knowledge
of the code word.

To bypass this problem, here we focus on an alter-
native approach based on multiple detection events.
As an example, we consider the simplest family of
doubly degenerate codes, which is obtained for c = 3
and m = 1, i.e., a code of three coherent states over
one mode: |α1〉, |α2〉, |α3〉. To discriminate these
states, we introduce an explicit linear receiver design
that makes use of two auxiliary vacuum modes. The
three modes (one signal and two auxiliary modes) are
first mixed in LOP unitary, then displaced by γ1, γ2,
γ3, and finally detected as schematically shown in
Fig. 3. Unlike the receivers of Sections 4.1, 4.2, here
two joint detection events unambiguously determine
the input state. Without loss of generality, we require
that input state |α1〉 yields the vacuum in the first
output mode, whereas the other two output modes
both have a non-zero probability of photon detection.
Similarly, we require that input state |α2〉 yields the
vacuum state on the second output mode, and state
|α3〉 yields the vacuum on the third output mode.

To write this condition explicitly, consider the uni-
tary matrix Uki that represents the LOP transforma-
tion. Then the amplitude on the output mode k, given
the input state |αj〉 is

ζjk = Uk1α
j + γk . (39)

We require that the output amplitude vanishes for
j = k, i.e.,

0 = Uj1α
j + γj , (40)

from which we obtain three constraints:

γj = −Uj1αj , (41)
for j = 1, 2, 3. Given the input state |α1〉, the proba-
bility of obtaining two joint photodetection events on
modes 2 and 3 is

P (2, 3|1) =
(

1− e−|ζ
1
2 |

2
)(

1− e−|ζ
1
3 |

2
)

(42)

=
(

1− e−|U21α
1+γ2|2

)(
1− e−|U31α

1+γ3|2
)
(43)

=
(

1− e−|U21|2|α1−α2|2
)(

1− e−|U31|2|α1−α3|2
)
,

(44)
where in the last equation we have used condition
(41). Note that P (2, 3|1) is the probability of identify-
ing the input state |α1〉, as we use double photodetec-
tion events to unambiguously discriminate the input
states. From this expression, given the prior probabil-
ity pj for coherent state |αj〉, we compute the average
probability of obtaining an inconclusive event:

P0 = 1− p1P (2, 3|1)− p2P (3, 1|2)− p3P (1, 2|3)
(45)

= 1− p1
(

1− e−|U21|2|α1−α2|2
)(

1− e−|U31|2|α1−α3|2
)

− p2
(

1− e−|U31|2|α2−α3|2
)(

1− e−|U11|2|α2−α1|2
)

− p3
(

1− e−|U11|2|α3−α1|2
)(

1− e−|U21|2|α3−α2|2
)
.

(46)
The optimal performance of linear receivers based on
double detection events is then obtained by minimiz-
ing this expression for P0 under the constraint that
the matrix U is unitary:

minimize
U11, U12, U13

P0 ,

subject to |U11|2 + |U21|2 + |U31|2 = 1 .
(47)

This constrained optimization problem can be solved
using Lagrange multipliers. Using the same setup,
we can generalize this approach to codes with higher
degeneracies.

5 Examples
In this Section, we explore with a few examples the
performance of our linear optical USD receivers rela-
tive to the global bound, for different coherent states
and figures of merits. We illustrate that, despite
its simplicity, decoders constructed using only lin-
ear components and on-off photodetection can gen-
erate near-optimal USD: this is observed for ran-
domly generated coherent states, where phase-space
displacement is necessary to achieve near-optimal per-
formances. The situation appears to be different for
non-typical coherent states with multiple degenera-
cies, in which case we need to exploit double-detection
events.
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|αj〉1

|0〉2

|0〉3

D(γ1)
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D(γ3)

0

1

1

LOP

Figure 3: Linear receiver employing double detection events
to unambiguously distinguish doubly degenerate codes with
m = 3, c = 1.

5.1 Discrimination of PPM codes and equiva-
lent codes
A set of orthogonal vectors can always be discrimi-
nated perfectly. Since coherent states with finite en-
ergy are never orthogonal, they cannot be perfectly
discriminated (though their discrimination can be im-
proved by increasing their distance in phase space). In
this Section, we explore a particular family of coherent
states that share some formal features with orthogo-
nal states. A pulse-position modulation (PPM) code
is a set of c = m coherent states over m modes:

|α1〉 = |α, 0, . . . , 0〉 ,
|α2〉 = |0, α, . . . , 0〉 ,

...
|αm〉 = |0, 0, . . . , α〉 ,

(48)

such that the matrix R = αI is a full-rank. Note that
these coherent states are mutually orthogonal with
respect to the phase-space scalar product (defined in
Eq. (8)), with Gram matrix (αi,αj) = |α|2δij . The
PPM code is often discussed in the context of quan-
tum communications [35, 36, 49]. In general, it rep-
resents a case study for quantum state discrimination
and hypothesis testing, see for example Ref. [50].

In general, there is a gap between the global bound
and the performance of linear receivers. However, for
a PPM code, it is easy to show that the gap van-
ishes as the PPM code can be optimally discrimi-
nated against using on-off photodetection only. In
fact, to unambiguously discriminate the states in the
PPM code, it is sufficient to apply mode-wise pho-
todetection. If a photon is detected on mode j,
then we know the input state necessarily was |αj〉
with no ambiguity. The inconclusive event is when
no click is recorded, which happens with probability
P0 = e−|α|

2
. It is well known that this inconclusive

probability saturates the global bound. To show this,
one can apply the results of Bergou et al. in Ref. [21]
(reviewed in Appendix B).

The optimality of linear receivers extends to a
larger class of codes beyond PPM. First note that,
since the phase-space scalar product is invariant un-
der LOP unitaries, it immediately follows that LOP

unitaries and on-off photodetection are sufficient to
optimally discriminate any set of coherent states that
has the same Gram matrix as the PPM code

(αi,αj) = |α|2δij , (49)

If the Gram matrix is not diagonal, we may try to
make it diagonal by applying a phase-space displace-
ment αj → βj = αj + γ, which changes the Gram
matrix into

(βi,βj) = (αi,αj) + (αi,γ) + (γ,αj) + (γ,γ) .
(50)

Therefore, the code can be optimally discriminated
with LOP unitaries, displacements, and photodetec-
tion, if there exists γ and τ > 0 such that

(αi,αj) + (αi,γ) + (γ,αj) + (γ,γ) = τδij . (51)

This is a system of c2 real equations and 2m + 1
real unknowns (the components of the complex dis-
placement vector γ and τ). Therefore, in general, we
expect this system of equations to have solutions if
c2 ≤ 2m+ 1.

As we have seen above, sometimes the use of an
auxiliary mode can improve the effectiveness of linear
receivers. In fact, adding an auxiliary mode allows
us to introduce one additional real degree of freedom,
i.e., |γm+1|2. The new system of equations reads

(αi,αj) + (αi,γ) + (γ,αj) + (γ,γ) + |γm+1|2 = τδij ,
(52)

and comprises c2 equations and 2m + 2 unknowns.
Therefore, we expect this to generally admit a solution
if c2 ≤ 2m+2. Note that there is no benefit in adding
more than one auxiliary mode 3.

5.2 Dual of the PPM code
An example of code that can be reduced to PPM by
applying phase space displacement is the following

|α1〉 = |0, α, α . . . , α〉 ,
|α2〉 = |α, 0, α, . . . , α〉 ,

...
|αm〉 = |α, α, . . . , α, 0〉 ,

(53)

where the state
∣∣αj〉 has the vacuum on mode j

and a coherent state of given amplitude α in the
other modes. Note that this code is mapped into a
PPM code by displacing each mode by −α. There-
fore, the linear receiver is optimal and saturates the
global bound on the inconclusive event probability,
P0 = e−|α|

2
.

3If we add k auxiliary modes we obtain the follow-
ing system of equations: (αi,αj) + (αi,γ) + (γ,αj) +
(γ,γ) +

∑k

j=1 |γm+j |2 = τδij . Defining the real parameter
Γ =

∑k

j=1 |γm+j |2, this system of equations is equivalent to
having a single auxiliary mode.
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Figure 4: Benchmarked performance of the linear receivers with displacement (35) and without displacement (34), sampled
on random codes. (a) Probability of inconclusive event P0 plotted vs the photon number, obtained by sampling over N = 500
random codes for each n. Shaded regions account for data within one standard deviation. The resolution for the mean photon
number is ∆n = 0.1. (b) Frequency distribution of the inconclusive event probability, obtained from N = 6600 random
samples with n = 0.6. The global bound is computed semi-analytically using the method of Bergou et al. [21].

5.3 Random codes
In this Section, we illustrate the performance of lin-
ear receivers on random states. Random codes are
particularly beneficial in benchmarking the perfor-
mance of receivers [51]. As an example, we con-
sider c = 3 coherent states over m = 3 modes. We
sample their amplitudes (α1, α2, α3) uniformly from a
sphere of radius

√
n, where n =

∑
i |αi|2, where for

simplicity we restrict to real-valued amplitudes. Fig-
ure 4(a) illustrates the minimized inconclusive prob-
ability P0 achieved from our optimized framework
without (34) and with (35) displacement. Notice that
the dependence of P0 on the average photon number
is compatible with the exponential law obtained in
the qualitative analysis of Section 3. Without dis-
placement, the linear receivers perform poorly. How-
ever, when equipped with displacement the perfor-
mance improves significantly and nearly matches the
global bound. To see this more clearly, Fig. 4(b) il-
lustrates the statistical distributions of P0 for n = 0.6
with N = 6600 random codes. The distribution of
the inconclusive probability for the linear receivers
with displacement closely matches the global bound,
with small variations at smaller values of P0. The
global bound has been computed using the method of
Ref. [21]. This result reassuringly demonstrates that
practical receivers based on linear optics are near-
optimal and sufficient to match the global bound, as
long as phase-space displacement operations are ac-
cessible.

5.4 Codes with single degeneracy
Random codes are typically non-degenerate. This
means the coherent states in the random codes are
almost surely linearly independent, i.e., the associ-
ated R is full rank. We now consider examples of
degenerate codes. As discussed above, our receiver,
endowed with phase-space displacement, can map a

code with single degeneracy into a non-degenerate
one. As an example, consider the code with single-
degeneracy [52]∣∣α1〉 = |−α, α〉 ,

∣∣α2〉 = |α,−α〉 ,
∣∣α3〉 = |α, α〉 .

(54)

In Fig. 5(a), we illustrate the optimized inconclusive
probabilities for linear receivers with displacement.
Since these amplitude vectors are not linearly inde-
pendent and have single degeneracy, receivers lim-
ited to LOP unitaries alone perform poorly, and we
must leverage displacement operations. By allowing
for phase-space displacement, our receivers match the
global bound for small intensities (e|α|

2
<
√

2). More
details on the optimal receiver design are provided
in Appendix D. The analytic expression of the global
bound can be obtained using the method of Ref. [21],
which yields

P global
0 =


1
3

(
2e−4|α|2 + 1

)
if e|α|

2
<
√

2 ,

2
3

(
2e−2|α|2 − e−4|α|2

)
if e|α|

2 ≥
√

2 .
(55)

The numerical optimality of linear receivers extends
to larger signal intensities for alternative figures of
merit, as discussed in the next Section.

5.5 Alternative figures of merit
The gap between linear receivers and the global bound
can be further reduced for alternative figures of merit.
Consider for example the communication capacity as-
sociated with the given input code words and a given
detection strategy. The coherent states in Eq. (54)
can be used as code words for a communication proto-
col where the sender (Alice) uses these coherent states
to encode a random variable X that takes values
x = 1, 2, 3 with associated probabilities pX(x). The
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Figure 5: Benchmarked performance of linear receivers for the two-mode code with single degeneracy from Eq. (54). (a)
Probability of inconclusive result P0 as a function of the symbol intensity |α|2. The analytic expression for the global bound
is given in Eq. (55). (b) Communication capacity, C, as a function of the symbol intensity |α|2. Linear receivers numerically
saturate the globally optimal communication capacity computed using the theory of Peres and Terno [14].

receiver (Bob) decodes this information by applying
either the linear receiver or a globally optimal USD
receiver. The outcome of the receiver is described by
a random variable Y that takes four possible values,
y = 0, 1, 2, 3, with probability pY (y), where y = 0
is the inconclusive event. The maximum asymptotic
communication rate achievable in this way is given by
the Shannon capacity [53]

C = max
pX

H(Y )−H(Y |X) , (56)

where

H(Y ) = −
∑
y

pY (y) log pY (y) (57)

is the Shannon entropy of Y , and

H(Y |X) = −
∑
x

pX(x)
∑
y

pY (y|x) log pY (y|x) (58)

is the conditional entropy, where pY (y|x) is the con-
ditional probability of Y = y given X = x.

Since the receivers are unambiguous, P0(x) :=
pY (y = 0|x) is the probability of an inconclusive
event for given input, and p(y|x) = δyx[1 − P0(x)]
for y = 1, 2, 3. The key quantity that determines the
capacity is thus the conditional inconclusive probabil-
ity P0(x). For linear receivers with displacement, this
is given by

P0(x) = exp [−kx |vx · (αx + γ)|] . (59)

From this we obtain

C = max
pX

{
−P0 logP0 −

∑
x

pX(x) log pX(x)

+
∑
x

pX(x)P0(x) log [pX(x)P0(x)]
}
,

(60)

where P0 =
∑
x pX(x)P0(x) is the average inconclu-

sive probability. A comparison between our scheme

(with LOP and displacement) and the global bound
is shown in Fig. 5(b). The two schemes yield nearly
equal capacities, the gap being too small to be visu-
alized in the scale of the plot.

In addition to the inconclusive probability and the
Shannon capacity, we explore the optimality of our
receiver using the finite communication block length
rate, F . This rate is the communication rate attain-
able when both the code length, L, is finite, and there
is a block error probability threshold, ε, imposed on
the communication [54]. The normal approximation
to the finite block length rate is given by [55]

F (L, ε) = C −
√
V

L
Q−1(ε), (61)

where Q(x) = 1/
√

2π
∫∞
x
dt exp[−t2/2], and V de-

notes the variance of the information transition prob-
abilities of the channel,

V =
∑
x,y

pY (y)pY (y|x)

log2

 pY (y|x)∑
z
pY (z)pY (z|x)

−X
2

,

(62)
and

X =
∑
x,y

pY (y)pY (y|x) log2

[
pY (y|x)∑

z pY (z)pY (z|x)

]
.

(63)
Figure 6 illustrates the outcome of this maximiza-
tion with different code lengths L and for different re-
ceivers. We find that linear receivers match the finite-
code-length performance generated from the global
bounds. Note that in the asymptotic regime of large
code block lengths, the finite rate tends towards the
channel capacity with ε = 0, which are illustrated in
horizontal lines.

5.6 Codes with double degeneracy
To discriminate codes with higher degeneracy we may
exploit joint detection events on pair of output modes.
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Figure 6: Finite block length rate, R, in bits with varying
code length n. Note that our scheme (dashed blue) with
linear optics and single-mode detection saturates the global
bound computed from the theory of Peres and Terno scheme
(solid brown).

Consider the single-mode code with double degener-
acy ∣∣α1〉 = |−α〉 ,

∣∣α2〉 = |α〉 ,
∣∣α3〉 = |0〉 . (64)

Single-mode codes find important applications in
quantum sensing and communications protocols
where individual measurements are preferred at
each instance. Given the double degeneracy, our
displacement-based receiver is not able to unambigu-
ously discriminate signal states in this code. However,
we can still discriminate these coherent states with
LOP unitaries, vacuum auxiliary modes, displace-
ment, and on-off detection by constructing receivers
that exploit double detection events as described in
Section 4.3. The minimal inconclusive event proba-
bility of this class of receivers is determined as the
solution to optimization (47). By noting the equiva-
lence between arbitrary auxiliary modes and vacuum
auxiliary modes followed by mode-wise displacement
operations, an explicit receiver that saturates the per-
formance of linear receivers for this code is illustrated
in Fig. 7(a). It requires two auxiliary modes: one
prepared in the vacuum and the other in a coherent
state with amplitude α/

√
2 (as noted above using co-

herent state ancillas is equivalent to using vacuum
ancillas and phase-space displacements). The modes
are then mixed at two 50/50 beam splitters and the
output modes are measured by on-off photodetection.
For an input amplitude αj chosen from (64), we write
the output coherent state amplitude at mode k as
ζjk. This input-output transformation on the coherent
state amplitudes is summarised in Table 2. By inspec-
tion of the table, it is evident that the coherent states
can be unambiguously discriminated if two detectors
click. For example, a joint detection on modes one
and two identifies the input code word |α1〉 = |−α〉
without error. From table 2, the probability of a joint
photodetection event in modes k and l can be deter-
mined through

Input
state

Output
mode 1

Output
mode 2

Output
mode 3

|α1〉 = |−α〉 |−α/
√

2〉 |α〉 |0〉

|α2〉 = |α〉 |α/
√

2〉 |0〉 | − α〉

|α3〉 = |0〉 |0〉 |α/2〉 | − α/2〉

Table 2: Input-output transformation of the coherent state
amplitudes through our linear receiver with two-mode photon
detection. The receiver is shown in Fig. 7(a).

P (k, l|j) = (1− exp[−|ζjk|
2])(1− exp[−|ζjl |

2]) . (65)

For this receiver, an inconclusive event corresponds
to the absence of a joint photodetection event. Given
a prior distribution pj , the average probability of ob-
taining an inconclusive event is then given by

P0 = 1−
3∑
j=1

pj
3∑
l=1

∑
k<l

P (k, l|j) , (66)

which for a uniform prior, pj = 1/3, yields

P0 = 1
3e
− 3|α|2

2

(
e|α|

2
+ 2e

|α|2

2 + 2e
5|α|2

4 − 2
)
, (67)

This result can be compared with the global bound,
which we compute analytically using Ref. [21] (see
Appendix E for proof):

P global
0 =


1
3

(
4e−|α|2 − 2e−2|α|2 + 1

)
if e|α|

2
< 4 ,

2
3

(
2e−|α|2/2 − e−2|α|2

)
if e|α|

2 ≥ 4 .
(68)

The performance of the linear receivers is bench-
marked with the global bound in Fig. 7(b). We note
that the behavior of P0 for small |α|2 is compatible
with the quadratic law in Eq. (21).

Finally, we note that while photon number resolv-
ing detectors (PNRDs) could help improve the per-
formance of our detectors, we do not expect their use
to replace the reliance on detection events across mul-
tiple modes. In the case of the example in Eq. (64),∣∣α1〉 and ∣∣α2〉 differ only in phase and have the same
photon statistics. Therefore PNRDs, by themselves,
cannot be sufficient to discriminate these two states.

5.7 Phase-shift keying
A common way to encode information into coherent
states is by phase modulation, i.e., phase-shift keying.
Previous works have considered practical schemes for
USD of phase-shifted coherent states, both with and
without feedback [26, 29, 30]. In this Section we an-
alyze USD of phase-shifted coherent states using our
linear receivers, re-obtaining some of the results of van
Enk [26].
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Figure 7: USD for the single-mode code with double degeneracy in Eq. (64): (a) Linear receiver implementing 50/50 beam
splitters (η = 1/2) and joint on-off photodetection measurements, where mode 2 carries the input coherent state, modes 1
and 3 carry auxiliary coherent states with amplitudes 0 and α/

√
2 respectively. For αj = −α, clicks are only registered at the

on-off photodetectors in modes 1 and 2, illustrated in darker blue. (b) The inconclusive event probability P0 plotted versus
|α|2 for different receivers. The solid red line corresponds to our joint-detection receiver, and the solid brown line to the
global bound for this code. The analytic expressions for the linear and the global bounds are given in Eq. (67) and Eq. (68)
respectively.

Binary phase-shift keying (BPSK) is a code with
two states on one mode (m = 1, c = 2):

|α1〉 = |α〉 , |α2〉 = | − α〉 . (69)

It is well-known how to optimally discriminate BPSK,
here we express this method in the framework of our
linear receivers. Indeed, to discriminate these states
we can apply the strategy described in Section 4.2.
Note that these states are not linearly independent in
phase space. To make them independent, first, we add
an auxiliary vacuum mode, generating the two-mode
states |α, 0〉, | − α, 0〉. Second, we displace the auxil-
iary mode by α, which yields two coherent states with
linear independent amplitude vectors, namely |α, α〉
and | − α, α〉. Finally, we note that the Gram ma-
trix of these latter states is diagonal, thus the code is
equivalent to the PPM code. Applying the argument
of Section 5.1, we conclude that the BPSK code is
optimally discriminated with linear receivers.

In general, we may consider M -PSK codes with M
states over a single mode:

|αj〉 = |α eij2π/M 〉 , (70)

for j = 0, . . . ,M − 1. Note that for M ≥ 3 the code
has multiple degeneracies. This means that it can
be discriminated only using multiple detection events.
For example, the 3PSK (M = 3) ensemble of coher-
ent states can be discriminated by exploiting double
detection events. For this, we make use of two auxil-
iary vacuum modes and construct linear receivers ac-
cording to the strategy described in Section 4.3. The
best linear receiver saturates optimization (47) and its
performance is shown in Fig. 8 along with the global
bound. Note that we recover the quadratic law of P0
for small |α|2 as predicted by Eq. (21). For USD of
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Figure 8: The optimized inconclusive event probability P0
plotted versus the 3PSK ensemble intensity |α|2 for different
receivers. The solid red line corresponds to the linear receiver,
and the brown line to the global bound for this code.

3PSK, it is easy to find the analytical expression for
the optimized probability of the inconclusive event for
linear receivers

P0 = 1−
(

1− e−|α|
2
)2

. (71)

Our numerical search suggests that using more than
two vacuum auxiliary modes delivers no additional ad-
vantage to USD. Finally, the global bound, obtained
from [21], reads

P global
0 = e−3|α|2/2 max

{
−2 cos (

√
3|α|2/2),

cos (
√

3|α|2/2)±
√

3 sin (
√

3|α|2/2)
}
.

(72)
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6 Conclusions

While quantum states cannot in general be discrim-
inated against without error, they can be discrimi-
nated against unambiguously if we allow for an in-
conclusive outcome. The theory of USD allows us
to identify the globally optimal measurements and
to compute the ultimate bounds on the probability
of obtaining an inconclusive outcome, see for exam-
ple [14, 20, 21]. However, existing literature has rarely
explored USD under realistic experimental constraints
and limitations in what measurements are currently
feasible, especially for the discrimination of coherent
states of the quantum electromagnetic field.

Here we have outlined a theory of USD for mul-
timode coherent states that focuses on practical re-
ceivers that can be feasibly realized with current tech-
nologies. Our receivers operate under physical re-
sources described entirely through linear optical pas-
sive (LOP) unitaries, phase-space displacement oper-
ations, auxiliary vacuum modes, and on-off mode-wise
photon detection. We have benchmarked the per-
formance of these linear receivers against the global
bound and found examples where they are optimal or
near-optimal. In particular, this happens for random
codes. Our findings show that high-performance USD
receivers can be readily realized with currently avail-
able technologies, and suggests that, at least for typi-
cal, non-degenerate codes, high-order non-linearities,
feedback, or more advanced quantum technologies
may only provide small improvements.

We do not have a complete theoretical explanation
of why linear receivers perform well. However, we
think that the reason may be related to the fact that,
at least for small amplitudes, the probability of mul-
tiple detection events is suppressed. Therefore, using
a photon number resolving detector may not be par-
ticularly useful unless the code is degenerate. Fur-
thermore, as the photon number is subject to quan-
tum fluctuations in coherent states, it is unlikely that
more detailed information on photon statistics can im-
prove USD (whereas it may be useful for ASD). Also,
we have seen that linear receivers achieve the global
bound for the PPM codes, and for all codes that can
be reduced to them by linear optics. By symmetry,
and by an argument of concentration of measure, we
may indeed expect that, up to statistical fluctuations,
a random code is not too different from a PPM code:
this is at least true in the regime where the number
of modes (m) is much larger than the number of code
words (c). In fact in this regime the scalar product
(αi,αj) (which is zero on average) has fluctuations of
order 1/

√
m and the Gram matrix becomes nearly di-

agonal if c� m. However, for small values of m, the
displacement operation seems to play an important
role that is not captured by this argument.

A number of questions remain open. First, an ana-
lytical expression for the inconclusive probability, be-

yond our numerical results, would characterize more
clearly the comparison with the global bound, and al-
low us to apply our analysis to an arbitrary number of
modes and code words. In the regime of weak signals,
this problem may be more naturally framed within the
language of Poisson quantum information [56]. Sec-
ond, an extension of our theory is required to han-
dle highly degenerate codes, when feedback opera-
tions could be useful. This is especially important
when the number of states is much larger than the
number of optical modes. In this regime, which is
of particular interest for quantum communications,
USD may be achieved only by exploiting joint pho-
todetection events on multiple modes. Finally, our
work might be formulated as a resource theory, similar
to Refs. [57, 58]. This approach may provide insight
and help in comparing different sets of resources, for
example by including homodyne or heterodyne detec-
tion, photon addition, and subtraction, or some mild
non-linear interactions.
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A Peres-Terno theory for USD
In this Appendix we review the theory of Peres and
Terno [14] for the USD of a set of linearly independent
vectors |uj〉 with j = {1, . . . , c}, associated with prior
probabilities pj (satisfying

∑c
j=1 p

j = 1). These vec-
tors span a c-dimensional Hilbert spaceHc. We define
a unique set of (not necessarily normalized) vectors
|vj〉 ∈ Hc such that

〈vi|uj〉 = δij〈vi|uj〉 . (73)

We use these vectors to define a POVM with n ele-
ments

Aj = k2
j |vj〉 〈vj | , (74)

for j = 1, . . . , n. The POVM element corresponding
to an inconclusive event is

A0 = I −
c∑
j=1

k2
j |vj〉 〈vj | . (75)
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The parameters kj are chosen in such way to ensure
A0 ≥ 0, and I is the identity in Hc. For a suit-
able choice of the parameters kj ’s, this POVM allows
for unambiguous discrimination. The corresponding
probability of an inconclusive outcome is

P0 =
c∑
j=1

pj〈uj |A0|uj〉 = 1−
c∑
j=1

pjk2
j |〈uj |vj〉|2 .

(76)

A globally optimal USD measurement corresponds to
the one that minimizes P0 subject to the positivity of
A0. This is obtained as the solution to the constrained
maximization problem:

maximize
k1, . . . , kn

c∑
j=1

pjk2
j |〈uj |vj〉|2 ,

subject to
c∑
j=1

k2
j |vj〉〈vj | ≤ I ,

(77)

which defines the globally optimal bound on the prob-
ability of the inconclusive outcome.

B Method of Bergou, Futschik, and
Feldman
Consider the c× c matrix with elements

Cij = 〈ui|A0|uj〉 . (78)

Note that the diagonal elements are the probabili-
ties of an inconclusive event conditioned on the vector
|uj〉,

qj = Cjj , (79)

and the off-diagonal elements are simply the overlaps
between the code words,

Cij = 〈ui|uj〉 , (80)

for i 6= j.
If the vectors |uj〉 are linearly independent, the con-

dition of non-negativity of the operator A0, A0 ≥ 0, is
equivalent to C ≥ 0. Therefore, following the theory
of Bergou et al. [21], the optimal average inconclusive
probability is obtained by solving the constrained op-
timization

minimize
q1, . . . , qj

c∑
j=1

pjqj ,

subject to C ≥ 0 .

(81)

Note, the solution to this optimization when qj = q
for all j is known to be the minimal eigenvalue of the
Gram matrix, that is, q [17]. More generally, for non-
equal qj , this problem can be solved analytically or
semi-analytically. The case of c = 3 is discussed in
detail in Ref. [21].

We can immediately apply this method to show
that PPM codes are optimally discriminated by mode-
wise photodetection. To prove this, recall that the
PPM codes are defined such that the matrix R is
square, with R = αI and I the c-dimensional iden-
tity matrix. The off-diagonal entries of the matrix
C are all equal to e−|α|

2
, while the diagonal entries

are all equal, i.e., Cjj = q. Therefore, the objective
function in the minimization (81) is equal to q. The
eigenvalues of C are (c− 1)e−|α|2 + q (with multiplic-
ity 1) and q − e−|α|2 (with multiplicity c − 1). The
smallest value of q such that the eigenvalues remain
non-negative is therefore q = e−|α|

2
, which matches

the inconclusive event probability obtained through
mode-wise photodetection in Section 5.1.

C Framework for optimized USD re-
ceivers
In this Appendix, we determine a condition for a c×m
matrix M (with c ≤ m) to be a submatrix of a larger
unitary matrix U . First, if c < m, extend M into a
square, m×m matrix,M0 by appending m−c rows of
zeros. Second, apply the singular value decomposition
M0 = UDV, where U and V are unitary matrices, and
D is diagonal with non-negative entries. For D ≤ 1,
the following 2m× 2m matrix is unitary:

V =

 D −
√
I −D2

√
I −D2 D

 , (82)

where I is the identity matrix. By multiplying V by
U and V we obtain another unitary matrix, which is
a unitary extension of M0,

U =

 U 0

0 I

 D −
√
I −D2

√
I −D2 D

 V 0

0 I


=

 M0 −U
√
I −D2

√
I −D2 V D

 .

(83)

AsM0 is an extension ofM , it follows that U is a uni-
tary extension of M . We conclude that a matrix M
can be extended into a unitary, if and only if its singu-
lar eigenvalues are not larger than 1. This condition
can equivalently be written as

M†M ≤ I , or MM† ≤ I . (84)

Note that with this construction, the unitary matrix
has at most size 2m. For our application, this means
that we need at mostm auxiliary modes to implement
the receiver. In particular, the minimum number of
auxiliary modes equals the number of singular values
of M0 that are strictly smaller than 1.
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D Receiver for a code with single de-
generacy
Here we discuss in more detail the optimal linear-
optics receiver for the code in Eq. (54)

|α1〉 = |−α, α〉 , |α2〉 = |α,−α〉 , |α3〉 = |α, α〉 .
(85)

By applying a displacement γ = (−α,−α) we can
map the third coherent state into the vacuum, and
the first two into a PPM code:

|β1〉 = |−2α, 0〉 , |β2〉 = |0,−2α〉 , |β3〉 = |0〉 . (86)

Each time a photo-detection event is observed, we
have un-ambiguous discrimination. This scheme is
shown in Fig. 9. Note that in this way, the third
coherent state is never discriminated. It is easy to
check that the probability of the inconclusive event
achieved in this way is P0 = 1

3

(
2e−4|α|2 + 1

)
and

thus, comparing with Eq. (55), the scheme is optimal
for e|α|

2
<
√

2.

|αj〉1

|αj〉2

D(−α)

D(−α)

0

1

Figure 9: Optimal receiver (in low-photon regime with |α|2 ≤
ln
√

2) for the two-mode, single-degeneracy CB (85), com-
prised of displacing each mode by −α before on-off photode-
tection.

To frame this scheme into our theory, we need to
add an ancillary mode, initially in the vacuum state,
then displace the three modes by γ = (−α,−α, z).
We then add another vacuum ancillary mode and
swap the third and fourth modes. USD is then
achieved by the photodetection of the first three
modes. This is shown in Fig. 10. Note that the third
detector never clicks, which is expected as the third
code word is not discriminated in this scheme.

|αj〉1

|αj〉2

|0〉3

|0〉4

D(−α)

D(−α)

D(z)

0

1

0

Figure 10: Optimal receiver (in low-photon regime with
|α|2 ≤ ln

√
2) for the two-mode, single-degeneracy CB (85),

comprised of two vacuum auxiliary modes, displacement
across the first three modes, a swap operation between modes
three and four, before on-off photodetection.

For larger values of α, i.e., for e|α|
2
>
√

2, LOP re-
ceivers are only near-optimal. Our numerical search
indicates that the optimal displacement is of the form
γ = (−x,−x, z), including one ancillary vacuum
mode, where the positive parameter x is in general
smaller than |α|. It follows that the unit vectors vi in
(35) are

v1 =M(z, 0, x− α) , (87)
v2 =M(0, z, x− α) , (88)
v3 = N (z, z, 2x) , (89)

where M and N are normalization factors. Numeri-
cally, we find we can assume without loss of generality
k1 = k2 = k3 =: k. Therefore, the matrix M reads

M =


kMz 0 kM(x− α)

0 kMz kM(x− α)

kN z kN z 2kNx

 , (90)

which in turn can be completed into a 6 × 6 (real-
valued) unitary matrix following for example the pro-
cedure of Appendix C. This scheme is shown in
Fig. 11.

|αj〉1

|αj〉2

|0〉3

|0〉4

|0〉5

|0〉6

D(−x)

D(−x)

D(z)

0

1

0
LOP

Figure 11: Near-optimal receiver (in the higher-photon
regime with |α|2 > ln

√
2) for the two-mode, single-

degeneracy CB (85).

E Example of code with double degen-
eracy
In this Appendix, we analytically derive the global
bound for the following family of single-mode coherent
states with double degeneracy

|α1〉 = |−α〉 , |α2〉 = |α〉 , |α3〉 = |0〉 (91)

using the method and notation of Bergou et al. [21].
Writing the overlaps 〈α1|α2〉 = s3e

iφ3 with two other
cyclic permutations of the indices for 0 ≤ sj ≤ 1, we
have

s3 = 〈α1|α2〉 = e−2|α|2 , (92)

s1 = 〈α2|α3〉 = e−|α|
2/2 = s2 , (93)
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with sj ∈ R for j ∈ {1, 2, 3}, and φj = 0. Hence, the
global invariant phase φ =

∑
j φj = 0. Writing s :=

s1 = s2, Bergou et al. introduce the cyclic parameters

r3 = s3

s1s2
= e−|α|

2
, r := r1 = r2 = 1

s3
= e2|α|2 .

(94)

The minimized total failure probability from Eq. (81)
can then be written as an optimization over the scaled
failure probabilities q̃j = rjqj ≤ rj [21]:

minimize
q̃1, q̃1, q̃3

Q =
3∑
j=1

ηj
q̃j
rj
,

subject to 0 ≤ q̃j ≤ rj ,
q̃j q̃k − 1 ≥ 0,

q̃1q̃2q̃3 − q̃1 − q̃2 − q̃3 + 2 cosφ ≥ 0 .
(95)

Note that the first constraint follows from the posi-
tivity of qj , the second from the positivity of the fail-
ure POVM Π0, and the third from the linear inde-
pendence (LI) of the states. Collectively, these con-
straints ensure the non-negativity of C in Eq. (81).

To analytically solve (95), note that the failure
scaled probabilities satisfy q̃ := q̃1 = q̃2. This sym-
metry reduces the general three-dimensional feasible
region in {q̃1, q̃2, q̃3} to a two-dimensional feasible re-
gion in {q̃, q̃3} defined by a cross-section along the
plane q̃1 = q̃2. The optimization then amounts to
finding the minimum solutions to the objective func-
tion along the interior, edge, and vertices that defines
this two-dimensional feasible constraint region. To
see this explicitly, note that the constraints in (95)
constrain the feasible range for q̃, q̃3 that collectively
satisfy

q̃ ∈ [1, e2|α|2 ] , q̃3 ∈ [0, e−|α|
2
] , q̃3 ≥

2
q̃ + 1 . (96)

1 e2n

e−n
A

B

q̃

q̃3

Figure 12: Feasible domain in the q̃−q̃3 space shown in white:
The lower (black) curve is q̃3 = q̃−1. The upper (red) curve
is q̃3 = 2(q̃ + 1)−1. The coordinates (q̃, q̃3) of vertices A
and B are (2e|α|

2
− 1, e−|α|

2
) and (e2|α|2 , 2(e2|α|2 + 1)−1)

respectively. The unshaded (white) region, referred to as the
interior region, corresponds to the optimal parameter space
for {q̃, q̃3}.

This feasible region for {q̃, q̃3} is illustrated within the
2D unshaded area in Fig. 12.

The objective function in Eq. (95) to minimize in
the allowed domain is (uniform a priori distribution)

P0(q̃, q̃3) = 1
3

3∑
j=1

q̃j
rj

= 1
3

(
2 e−2|α|2 q̃ + e|α|

2
q̃3

)
.

(97)

Small values of q̃ and q̃3 make this quantity smaller,
this means that the minimum is on the curve that
joins the points A and B, as shown in Fig. 12. We
first compute P0 on vertex A, which has coordinates
(q̃, q̃3) = (2e|α|2 − 1, e−|α|2), and vertex B, with coor-
dinates (e2|α|2 , 2(e2|α|2 + 1)−1), to give

P0(A) = 1
3

(
4e−|α|

2
− 2e−2|α|2 + 1

)
, (98)

P0(B) = 1
3

(
2 + 2e|α|2

e2|α|2 + 1

)
. (99)

A comparison of the two values is illustrated in
Fig. 13(a), which shows that P0(A) ≤ P0(B). There-
fore, we discard the point B from the search for the
minimized P0 value.

Next, we minimize P0 over the interior points be-
tween A to B along q̃3 = 2(q̃ + 1)−1:

P0(q̃) = 2
3

(
e−2|α|2 q̃ + e|α|

2

q̃ + 1

)
, (100)

which amounts to a single parameter optimiza-
tion. This function has a stationary point at
q̃in = e3|α|2/2 − 1 yielding

P in
0 = 2

3

(
2e−|α|

2/2 − e−2|α|2
)
. (101)

The feasibility of this solution is conditioned on the
stationarity point qin residing within the allowed do-
main between vertices A and B, which holds if and
only if

e3|α|2/2 − 1 ∈ [2e|α|
2
− 1, e2|α|2 ] =⇒ e|α|

2
≥ 4 .

(102)

This solution is illustrated together with P0(A) in
Fig. 13(b). The solution P in

0 is plotted only when
e|α|

2 ≥ 4. The two solution crosses exactly at |α|2 =
ln(4). Hence, the global minimum for the double-
degeneracy (DD CB is characterized by P0(A) for
en < 4, and P in

0 for en ≥ 4:

PGlobal-DD
0 =


1
3

(
4e−|α|2 − 2e−2|α|2 + 1

)
if e|α|

2
< 4

2
3

(
2e−|α|2/2 − e−2|α|2

)
if e|α|

2 ≥ 4 ,
(103)

which concludes our proof.
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Figure 13: Edge and vertex solutions for minimized P0: a) The solution P0(A) in blue, and the solution P0(B) in red, plotted
versus |α|2. This shows that only vertex A needs to be considered. b) The global minimum P Global

0 as a function of n. The
interplay between minimal inconclusive event probabilities as given by P0(A) in blue and P in

0 in brown means the minimized
solution given by P0(A) for n ≥ ln(4) (dashed blue) is superseded by the solution given by P in

0 (solid brown).
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