10 research outputs found

    Revisiting the modified Baermann extraction method: extraction efficiency of Radopholus similis using different extraction materials

    Get PDF
    Open Access Article; 29 Sept 2021In order to determine the threat that plant-parasitic nematodes pose to crop production, it is essential to establish an accurate estimation of their presence. The extraction efficiency from soil, therefore, is a critical step in establishing disease pressures presented by nematodes or the conditions of soil health. To achieve high nematode extraction efficiency, various methods and modifications have been developed over time (Oostenbrink, 1954; Seinhorst, 1956; Harrison & Green, 1976; Viaene et al., 2021) with variations being introduced locally, depending on the availability or access to certain materials

    Biocontrol-based strategies for improving soil health and managing plant-parasitic nematodes in coffee production

    Get PDF
    Coffee is an important commodity for Kenya, where production is steadily declining, despite a global rise in demand. Of the various constraints affecting production, plant-parasitic nematodes are a significant, but often overlooked, threat. As a perennial crop, treating plantations once infected with nematodes becomes difficult. The current study evaluated the drenching application of two biocontrol agents, Trichoderma asperellum and Purpureocillium lilacinum, for their nematode control efficacy, as well as their impact on the soil nematode community structure on mature, established coffee trees in Kenya. Seven Arabica coffee field trials were conducted over two years on trees of various ages. All the fields were heavily infested with Meloidogyne hapla, the first report of the species on coffee in Kenya. Both fungal biocontrol agents were detected endophytically infecting roots and recovered from soil but not until six months after initial applications. The population densities of M. hapla had significantly declined in roots of treated trees 12 months after the initial application, although soil nematode density data were similar across treatments. Based upon the maturity index and the Shannon index, treatment with T. asperellum led to improved soil health conditions and enrichment of diversity in the microbial community. Application of P. lilacinum, in particular, led to an increased abundance of fungivorous nematodes, especially Aphelenchus spp., for which P. lilacinum would appear to be a preferred food source. The soils in the trials were all stressed and denuded, however, which likely delayed the impact of such treatments or detection of any differences between treatments using indices, such as the functional metabolic footprint, over the period of study. A longer period of study would therefore likely provide a better indication of treatment benefits. The current study positively demonstrates, however, the potential for using biologically based options for the environmentally and climate-smart management of nematode threats in a sustainable manner on established, mature coffee plantations

    Potential of cavalcade, Centrosema pascuorum, leaves for controlling Meloidogyne javanica and quantification of active phytochemicals

    Get PDF
    Open Access ArticleThe legume cavalcade, Centrosema pascuorum, is used extensively as a cover crop and as a component of conservation agriculture systems. It is also an attractive rotation or cover crop for the management of root-knot nematodes (RKN; Meloidogyne spp.) as it is a non-host. RKN are persistent pests that are well known to be difficult to control. However, the mechanisms governing the non-host status of cavalcade is unknown. The current study established that cavalcade leaves are toxic to RKN as either aqueous extracts or soil amendments. Bioassays conducted using Meloidogyne javanica showed that a 90% concentration of aqueous extract derived from 1-month-old cavalcade leaves (89 mg crude extract ml−1) suppressed nematode hatch (82.9%) and killed infective second-stage juveniles of M. javanica (85.3%). Soil amendments with 1% (w/w) of 1-month-old cavalcade leaves (0.99 mg crude extract g−1 soil) also provided effective control of M. javanica in the glasshouse on okra. One-month-old leaves appeared more effective than 2- or 3-month-old leaves. The soil amendments had no adverse phytotoxic effect on okra seed germination. Our study demonstrates the potential for using cavalcade leaves or extracts to manage RKN. This may be due to the nematicidal activity of the various compounds in the leaves, such as flavonoids, phenols and terpenoids, which should be further assessed

    Biocontrol-based strategies for improving soil health and managing plant-parasitic nematodes in coffee production

    Get PDF
    Open Access JournalCoffee is an important commodity for Kenya, where production is steadily declining, despite a global rise in demand. Of the various constraints affecting production, plant-parasitic nematodes are a significant, but often overlooked, threat. As a perennial crop, treating plantations once infected with nematodes becomes difficult. The current study evaluated the drenching application of two biocontrol agents, Trichoderma asperellum and Purpureocillium lilacinum, for their nematode control efficacy, as well as their impact on the soil nematode community structure on mature, established coffee trees in Kenya. Seven Arabica coffee field trials were conducted over two years on trees of various ages. All the fields were heavily infested with Meloidogyne hapla, the first report of the species on coffee in Kenya. Both fungal biocontrol agents were detected endophytically infecting roots and recovered from soil but not until six months after initial applications. The population densities of M. hapla had significantly declined in roots of treated trees 12 months after the initial application, although soil nematode density data were similar across treatments. Based upon the maturity index and the Shannon index, treatment with T. asperellum led to improved soil health conditions and enrichment of diversity in the microbial community. Application of P. lilacinum, in particular, led to an increased abundance of fungivorous nematodes, especially Aphelenchus spp., for which P. lilacinum would appear to be a preferred food source. The soils in the trials were all stressed and denuded, however, which likely delayed the impact of such treatments or detection of any differences between treatments using indices, such as the functional metabolic footprint, over the period of study. A longer period of study would therefore likely provide a better indication of treatment benefits. The current study positively demonstrates, however, the potential for using biologically based options for the environmentally and climate-smart management of nematode threats in a sustainable manner on established, mature coffee plantations
    corecore