131 research outputs found
Osteogenic differentiation of human mesenchymal stem cells promotes mineralization within a biodegradable peptide hydrogel
An attractive strategy for the regeneration of tissues has been the use of extracellular matrix analogous biomaterials. Peptide-based fibrillar hydrogels have been shown to mimic the structure of extracellular matrix offering cells a niche to undertake their physiological functions. In this study, the capability of an ionic-complementary peptide FEFEFKFK (F, E, and K are phenylalanine, glutamic acid, and lysine, respectively) hydrogel to host human mesenchymal stem cells in three dimensions and induce their osteogenic differentiation is demonstrated. Assays showed sustained cell viability and proliferation throughout the hydrogel over 12 days of culture and these human mesenchymal stem cells differentiated into osteoblasts simply upon addition of osteogenic stimulation. Differentiated osteoblasts synthesized key bone proteins, including collagen-1 (Col-1), osteocalcin, and alkaline phosphatase. Moreover, mineralization occurred within the hydrogel. The peptide hydrogel is a naturally biodegradable material as shown by oscillatory rheology and reversed-phase high-performance liquid chromatography, where both viscoelastic properties and the degradation of the hydrogel were monitored over time, respectively. These findings demonstrate that a biodegradable octapeptide hydrogel can host and induce the differentiation of stem cells and has the potential for the regeneration of hard tissues such as alveolar bon
Modification of β-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation
β-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended β-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity)
Moving forward the Italian nursing education into the post-pandemic era: findings from a national qualitative research study
Background: During the CoronaVIrus-19 (COVID-19) pandemic, nursing education has been dramatically transformed and shaped according to the restrictions imposed by national rules. Restoring educational activities as delivered in the pre-pandemic era without making a critical evaluation of the transformations implemented, may sacrifice the extraordinary learning opportunity that this event has offered. The aim of this study was to identify a set of recommendations that can guide the Italian nursing education to move forward in the post-pandemic era. Methods: A qualitative descriptive design was undertaken in 2022–2023 and reported here according to the COnsolidated criteria for REporting Qualitative research guidelines. A network was established of nine Italian universities offering a bachelor’s degree in nursing for a total of 6135 students. A purposeful sample of 37 Faculty Members, 28 Clinical Nurse Educators and 65 Students/new graduates were involved. A data collection was conducted with a form including open-ended questions concerning which transformations in nursing education had been implemented during the pandemic, which of these should be maintained and valued, and what recommendations should address the transition of nursing education in the post-pandemic era. Results: Nine main recommendations embodying 18 specific recommendations have emerged, all transversally influenced by the role of the digital transformation, as a complementary and strengthening strategy for face-to-face teaching. The findings also suggest the need to rethink clinical rotations and their supervision models, to refocus the clinical learning aims, to pay attention towards the student community and its social needs, and to define a pandemic educational plan to be ready for unexpected, but possible, future events. Conclusions: A multidimensional set of recommendations emerged, shaping a strategic map of action, where the main message is the need to rethink the whole nursing education, where digitalization is embodied. Preparing and moving nursing education forward by following the emerged recommendations may promote common standards of education and create the basis on for how to deal with future pandemic/catastrophic events by making ready and prepared the educational systems
Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment
From MDPI via Jisc Publications RouterHistory: accepted 2021-06-25, pub-electronic 2021-06-30Publication status: PublishedFunder: Innovate UKRI Research Knowledge Transfer Partnership; Grant(s): KTP: Self-assembling peptide matrices as a platform for cell biology studies and drug deliveryThe tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A)
Controlling Doxorubicin Release from a Peptide Hydrogel through Fine-Tuning of Drug–Peptide Fiber Interactions
open access articleHydrogels are versatile materials that have emerged in the last few decades as promising candidates for a range of applications in the biomedical field, from tissue engineering and regenerative medicine to controlled drug delivery. In the drug delivery field, in particular, they have been the subject of significant interest for the spatially and temporally controlled delivery of anticancer drugs and therapeutics. Self-assembling peptide-based hydrogels, in particular, have recently come to the fore as potential candidate vehicles for the delivery of a range of drugs. In order to explore how drug–peptide interactions influence doxorubicin (Dox) release, five β-sheet-forming self-assembling peptides with different physicochemical properties were used for the purpose of this study, namely: FEFKFEFK (F8), FKFEFKFK (FK), FEFEFKFE (FE), FEFKFEFKK (F8K), and KFEFKFEFKK (KF8K) (F: phenylalanine; E: glutamic acid; K: lysine). First, Dox-loaded hydrogels were characterized to ensure that the incorporation of the drug did not significantly affect the hydrogel properties. Subsequently, Dox diffusion out of the hydrogels was investigated using UV absorbance. The amount of drug retained in F8/FE composite hydrogels was found to be directly proportional to the amount of charge carried by the peptide fibers. When cation−π interactions were used, the position and number of end-lysine were found to play a key role in the retention of Dox. In this case, the amount of Dox retained in F8/KF8K composite hydrogels was linked to the amount of end-lysine introduced, and an end-lysine/Dox interaction stoichiometry of 3/1 was obtained. For pure FE and KF8K hydrogels, the maximum amount of Dox retained was also found to be related to the overall concentration of the hydrogels and, therefore, to the overall fiber surface area available for interaction with the drug. For 14 mM hydrogel, ∼170–200 μM Dox could be retained after 24 h. This set of peptides also showed a broad range of susceptibilities to enzymatic degradation opening the prospect of being able to control also the rate of degradation of these hydrogels. Finally, the Dox released from the hydrogel was shown to be active and affect 3T3 mouse fibroblasts viability in vitro. Our study clearly shows the potential of this peptide design as a platform for the formulation of injectable or sprayable hydrogels for controlled drug delivery
Designing Peptide/Graphene Hybrid Hydrogels through Fine-Tuning of Molecular Interactions
A recent strategy that has emerged for the design of increasingly functional hydrogels is the incorporation of nanofillers in order to exploit their specific properties to either modify the performance of the hydrogel or add functionality. The emergence of carbon nanomaterials in particular has provided great opportunity for the use of graphene derivatives (GDs) in biomedical applications. The key challenge when designing hybrid materials is the understanding of the molecular interactions between the matrix (peptide nanofibers) and the nanofiller (here GDs) and how these affect the final properties of the bulk material. For the purpose of this work, three gelling β-sheet-forming, self-assembling peptides with varying physiochemical properties and five GDs with varying surface chemistries were chosen to formulate novel hybrid hydrogels. First the peptide hydrogels and the GDs were characterized; subsequently, the molecular interaction between peptides nanofibers and GDs were probed before formulating and mechanically characterizing the hybrid hydrogels. We show how the interplay between electrostatic interactions, which can be attractive or repulsive, and hydrophobic (and π–π in the case of peptide containing phenylalanine) interactions, which are always attractive, play a key role on the final properties of the hybrid hydrogels. The shear modulus of the hydrid hydrogels is shown to be related to the strength of fiber adhesion to the flakes, the overall hydrophobicity of the peptides, as well as the type of fibrillar network formed. Finally, the cytotoxicity of the hybrid hydrogel formed at pH 6 was also investigated by encapsulating and culturing human mesemchymal stem cells (hMSC) over 14 days. This work clearly shows how interactions between peptides and GDs can be used to tailor the mechanical properties of the resulting hydrogels, allowing the incorporation of GD nanofillers in a controlled way and opening the possibility to exploit their intrinsic properties to design novel hybrid peptide hydrogels for biomedical applications
Teeth of the red fox Vulpes vulpes (L., 1758) as a bioindicator in studies on fluoride pollution
An examination was made of fluoride content in the mandibular first molars of the permanent teeth of the red fox Vulpes vulpes living in north-west (NW) Poland. The teeth were first dried to a constant weight at 105°C and then ashed. Fluorides were determined potentiometrically, and their concentrations were expressed in dry weight (DW) and ash. The results were used to perform an indirect estimation of fluoride pollution in the examined region of Poland. The collected specimens (n = 35) were classified into one of the three age categories: immature (im, 6–12 months), subadult (subad, from 12 to 20 months) and adult (ad, >20 months). The mean concentrations (geometric mean) of fluoride were similar in the im and subad groups (230 and 296 mg/kg DW and 297 and 385 mg/kg ash, respectively), and significantly smaller than in the ad group (504 and 654 mg/kg, respectively, in DW and ash). Basing on other reports that the ∼400 mg/kg DW concentration of fluoride in bones in the long-lived wild mammals generally reflects the geochemical background, it was found that 57% of the foxes in NW Poland exceeded this value by 9% to 170%. This indirectly reflects a moderate fluoride contamination in the tested region
RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells
Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution—pronase—was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed
- …