38 research outputs found

    Improved Automated Radiosynthesis of [11C]PBR28

    No full text

    Improved Automated Radiosynthesis of [11C]PBR28

    No full text
    Microglial activation is commonly identified by elevated levels of the 18 kDa translocator protein (TSPO) in response to several inflammatory processes. [11C]PBR28 is one of the most promising PET tracers to image TSPO in both human and non-human primates. In this study, we optimized the radiolabeling procedure of [11C]PBR28 for higher radiochemical yield, radiochemical purity, and specific activity, which can be easily translated to any automated module for clinical trials. Time-activity curves (TACs) derived from the dynamic PET imaging of male rhesus monkey brains demonstrated that [11C]PBR28 had suitable kinetics with radiotracer accumulation observed in the caudate, putamen, cerebellum, and frontal cortex region

    Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study

    Get PDF
    There is currently no established therapy to treat or prevent Alzheimer’s disease. The ketogenic diet supplies an alternative cerebral metabolic fuel, with potential neuroprotective effects. Our goal was to compare the effects of a modified Mediterranean-ketogenic diet (MMKD) and an American Heart Association Diet (AHAD) on cerebrospinal fluid Alzheimer’s biomarkers, neuroimaging measures, peripheral metabolism, and cognition in older adults at risk for Alzheimer’s. Twenty participants with subjective memory complaints (n = 11) or mild cognitive impairment (n = 9) completed both diets, with 3 participants discontinuing early. Mean compliance rates were 90% for MMKD and 95% for AHAD. All participants had improved metabolic indices following MMKD. MMKD was associated with increased cerebrospinal fluid Aβ42 and decreased tau. There was increased cerebral perfusion and increased cerebral ketone body uptake (11C-acetoacetate PET, in subsample) following MMKD. Memory performance improved after both diets, which may be due to practice effects. Our results suggest that a ketogenic intervention targeted toward adults at risk for Alzheimer’s may prove beneficial in the prevention of cognitive decline

    Binding Parameters of [<sup>11</sup>C]MPC-6827, a Microtubule-Imaging PET Radiopharmaceutical in Rodents

    No full text
    Impairment and/or destabilization of neuronal microtubules (MTs) resulting from hyper-phosphorylation of the tau proteins is implicated in many pathologies, including Alzheimer’s disease (AD), Parkinson’s disease and other neurological disorders. Increasing scientific evidence indicates that MT-stabilizing agents protect against the deleterious effects of neurodegeneration in treating AD. To quantify these protective benefits, we developed the first brain-penetrant PET radiopharmaceutical, [11C]MPC-6827, for in vivo quantification of MTs in rodent and nonhuman primate models of AD. Mechanistic insights revealed from recently reported studies confirm the radiopharmaceutical’s high selectivity for destabilized MTs. To further translate it to clinical settings, its metabolic stability and pharmacokinetic parameters must be determined. Here, we report in vivo plasma and brain metabolism studies establishing the radiopharmaceutical-binding constants of [11C]MPC-6827. Binding constants were extrapolated from autoradiography experiments; pretreatment with a nonradioactive MPC-6827 decreased the brain uptake >70%. It exhibited ideal binding characteristics (typical of a CNS radiopharmaceutical) including LogP (2.9), Kd (15.59 nM), and Bmax (11.86 fmol/mg). Most important, [11C]MPC-6827 showed high serum and metabolic stability (>95%) in rat plasma and brain samples

    EVALUATION OF [11C]MPC-6827 AS A MICROTUBULE TARGETING PET RADIOTRACER IN CANCER CELL LINES:

    No full text
    Objective: The objective of this study was to evaluate the uptake and specificity of [11C]MPC-6827, a MT targeted PET ligand in prostate, glioblastoma and breast cancer cells. Methods: [11C]MPC-6827 was synthesized by reacting corresponding desmethyl precursors with [11C]CH3I in a GE-FX2MeI/FX2M radiochemistry module. In vitro binding of [11C]MPC-6827 was performed in breast cancer MDA-MB-231, glioblastoma (GBM) patient-derived tumor (GBM-PDX), GBM U251 and prostate cancer 3 (PC3) cell lines at 37 °C in quadruplicate at 5, 15, 30, 60, and 90 minute incubation time. The nonspecific bindings were determined by incubation with unlabeled microtubule targeting agents MPC-6827, HD-800, colchicine, paclitaxel and docetaxel (5.0 mM). Results: [11C]MPC-6827 provided the highest binding in the breast cancer cell, MDA-MB-231, among all the cells studied, with 90% specific binding. [11C]MPC-6827 binds to glioblastoma PDX and U251 cells with ~50% and 40% specific binding, whereas, prostate cancer cell line, PC3 cells showed 40% specific binding. [11C]MPC-6827 also exhibits binding to the taxane and colchicine binding sites of MTs, in MDA-MB-231 cells. Conclusion: These data indicate that [11C]MPC-6827 can be a promising PET radiotracer for preclinical imaging of the brain and peripheral cancers

    Amino Acid Uptake Measured by [18F]AFETP Increases in Response to Arginine Starvation in ASS1-Deficient Sarcomas

    Get PDF
    Rational: In a subset of cancers, arginine auxotrophy occurs due to the loss of expression of argininosuccinate synthetase 1 (ASS1). This loss of ASS1 expression makes cancers sensitive to arginine starvation that is induced by PEGylated arginine deiminase (ADI-PEG20). Although ADI-PEG20 treatment is effective, it does have important limitations. Arginine starvation is only beneficial in patients with cancers that are ASS1-deficient. Also, these tumors may metabolically reprogram to express ASS1, transforming them from an auxotrophic phenotype to a prototrophic phenotype and thus rendering ADI-PEG20 ineffective. Due to these limitations of ADI-PEG20 treatment and the potential for developing resistance, non-invasive tools to monitor sensitivity to arginine starvation are needed. Methods:: Within this study, we assess the utility of a novel positron emission tomography (PET) tracer to determine sarcomas reliant on extracellular arginine for survival by measuring changes in amino acid transport in arginine auxotrophic sarcoma cells treated with ADI-PEG20. The uptake of the 18F-labeled histidine analogue, (S)-2-amino-3-[1-(2-[18F]fluoroethyl)-1H-[1,2,3]triazol-4-yl]propanoic acid (AFETP), was assessed in vitro and in vivo using human-derived sarcoma cell lines. In addition, we examined the expression and localization of cationic amino acid transporters in response to arginine starvation with ADI-PEG20. Results:: In vitro studies revealed that in response to ADI-PEG20 treatment, arginine auxotrophs increase the uptake of L-[3H]arginine and [18F]AFETP due to an increase in the expression and localization to the plasma membrane of the cationic amino acid transporter CAT-1. Furthermore, in vivo PET imaging studies in mice with arginine-dependent osteosarcoma xenografts showed increased [18F]AFETP uptake in tumors 4 days after ADI-PEG20 treatment compared to baseline. Conclusion:: CAT-1 transporters localizes to the plasma membrane as a result of arginine starvation with ADI-PEG20 in ASS1-deficient tumor cells and provides a mechanism for using cationic amino acid transport substrates such as [18F]AFETP for identifying tumors susceptible to ADI-PEG20 treatment though non-invasive PET imaging techniques. These findings indicate that [18F]AFETP-PET may be suitable for the early detection of tumor response to arginine depletion due to ADI-PEG20 treatment
    corecore