523 research outputs found
Variational principle for frozen-in vortex structures interacting with sound waves
General properties of conservative hydrodynamic-type models are treated from
positions of the canonical formalism adopted for liquid continuous media, with
applications to the compressible Eulerian hydrodynamics, special- and
general-relativistic fluid dynamics, and two-fluid plasma model including the
Hall-magnetohydrodynamics. A variational formulation is found for motion and
interaction of frozen-in localized vortex structures and acoustic waves in a
special description where dynamical variables are, besides the Eulerian fields
of the fluid density and the potential component of the canonical momentum,
also the shapes of frozen-in lines of the generalized vorticity. This
variational principle can serve as a basis for approximate dynamical models
with reduced number of degrees of freedom.Comment: 7 pages, revtex4, no figure
Polymorphism of lead(ii) benzenethiolate: a noncentrosymmetric new allotropic form of Pb(SPh)2
Depending upon its conditions of crystallization, lead(II) benzenethiolate can exist in two forms: a low-temperature centrosymmetric phase α-Pb(SPh)2 which can be converted by heating into the noncentrosymmetric, 2nd order NLO strongly active and room temperature metastable β-Pb(SPh)2 phase, thus affording an example of transition towards noncentrosymmetry induced by a rise of temperature
Scaling of the electron dissipation range of solar wind turbulence
Electron scale solar wind turbulence has attracted great interest in recent
years. Clear evidences have been given from the Cluster data that turbulence is
not fully dissipated near the proton scale but continues cascading down to the
electron scales. However, the scaling of the energy spectra as well as the
nature of the plasma modes involved at those small scales are still not fully
determined. Here we survey 10 years of the Cluster search-coil magnetometer
(SCM) waveforms measured in the solar wind and perform a statistical study of
the magnetic energy spectra in the frequency range []Hz. We show that a
large fraction of the spectra exhibit clear breakpoints near the electon
gyroscale , followed by steeper power-law like spectra. We show that
the scaling below the electron breakpoint cannot be determined unambiguously
due to instrumental limitations that will be discussed in detail. We compare
our results to recent ones reported in other studies and discuss their
implication on the physical mechanisms and the theoretical modeling of energy
dissipation in the SW.Comment: 10 pages, submitte
Nonlinear optical properties of selected natural pigments extracted from spinach: Carotenoids
They are report here, for the first time in authors knowledge, results on third order nonlinear optical susceptibilities from a series of natural pigments extracted from spinach. The measurements were performed in-situ at 532 nm wavelength using degenerate four wave mixing technique (DFWM). For comparison third order nonlinear optical susceptibilities of the same pigments were also evaluated using third harmonic generation (THG) set up at 1064 nm. The electronic contribution to the observed properties was also deduced. The measurements were performed on thin films deposited on a thick glass substrate. These pigments were also identified by UV–VIS spectral analysis. All these results were in good agreement with the literature data
Modulation des propriétés ONL de ligands azobenzéniques par coordination de cations métalliques
National audienc
Nonlinear photonics properties of porphyrins nanocomposites and self-assembled porphyrins
Two major reasons limit porphyrins photonic applications: (i) the difficulty of handling them in liquid solutions and (ii) their degradation with long exposure to light. This necessitates the use of appropriate solid matrices to host the porphyrin compounds such as Nafion (117), a stable and inert ion exchange polymer. The first part of this publication confirms such a possibility. In addition to their effective NLO properties, an enhancement of the Soret and Q-bands absorbance width have been observed by blending three different porphyrin molecules in the Nafion column matrix membrane. This is an important development towards achieving efficient photon-harvesting medium for possible application in photonic devices. The second part of this contribution reports on the self-assembly/molecular recognition of a specific class of porphyrins giving rise to tubular nano-systems with potential THG nonlinear properties
On Non Commutative G2 structure
Using an algebraic orbifold method, we present non-commutative aspects of
structure of seven dimensional real manifolds. We first develop and solve
the non commutativity parameter constraint equations defining manifold
algebras. We show that there are eight possible solutions for this extended
structure, one of which corresponds to the commutative case. Then we obtain a
matrix representation solving such algebras using combinatorial arguments. An
application to matrix model of M-theory is discussed.Comment: 16 pages, Latex. Typos corrected, minor changes. Version to appear in
J. Phys.A: Math.Gen.(2005
The Investigation of third-order hyperpolarizabilities and susceptibilities of push-pull azobenzene polymers
International audienc
Conjugated iminopyridine based Azo dye derivatives with efficient charge transfer for third order nonlinearities
International audienceThe third order nonlinearities of two azobenzene-iminopyridine molecular systems have been investigated employing the Z-scan technique at 532 nm, 30 ps. The objective of the work has been to study and to compare the nonlinearity of two iminopyridine based ligands substituted with one (NO2AzoIminoPy, A) and two azobenzene units ((NO2Azo)2IminoPy, B). The ligand B exhibits an extended conjugated structure and higher charge transfer within the molecule. Our results show high dependence of the nonlinearity on both the conjugation length within the molecule and on the number of the electron accepting units
- …
