984 research outputs found

    Postgraduate University Students’ Experiences and Attitudes Toward Culturally Diverse Learning Environments

    Get PDF
    In this paper we investigate the attitudes that Australian domestic university students hold toward cultural diversity on a large, metropolitan university campus. We employed a qualitative approach incorporating five individual semistructured interviews, and a focus group in order to gather data on the participants’ attitudes toward cultural diversity, and the contributing influences on these attitudes. The findings of this study indicate that the participants’ attitudes were impacted significantly by past and present experiences of cultural diversity, and the immersion in a culturally diverse university campus. The research contextualizes how these life experiences are responsible for shaping attitudes toward cultural diversity on university campus and provides an insight into the influence of cultural diversity on Australian university campuses, including how such diversity policies have influenced attitudes. Importantly it discusses how more culturally inclusive learning environments can be created on university campus to accommodate this increasing diversity and how this translates into a more successful learning environment

    Effects of plant growth promoting rhizobacteria (PGPR) on yield,growth and nutrient contents in organically growing raspberry

    Get PDF
    During 2003 and 2005, plant growth promoting effects of two Bacillus strains OSU-142 (N2-fixing) and M3 (N2-fixing and phosphate solubilizing) were tested alone or in combinations on organically grown primocane fruiting raspberry (cv. Heritage) plants in terms of yield, growth, nutrient composition of leaves and variation of soil nutrient element composition in the province of Erzurum, Turkey. The results showed that Bacillus M3 treatment stimulated plant growth and resulted in significant yield increase. Inoculation of raspberry plant roots and rhizosphere with M3 and/or OSU-142 + M3, significantly increased yield (33.9% and 74.9%), cane length (13.6% and 15.0%), number of cluster per cane (25.4% and 28.7%) and number of berries per cane (25.1% and 36.0%) compared with the control, respectively. In addition, N, P and Ca contents of raspberry leaves with OSU-142 + M3 treatment, and Fe and Mn contents of the leaves of raspberry with M3 and OSU-142 + M3 applications significantly improved under organic growing conditions. Bacterial applications also significantly effected soil total N, available P, K, Ca, Mg, Fe, Mn, Zn contents and pH. Available P contents in soil was determined to be increased from 1.55 kg P2O5/da at the beginning of the study to 2.83 kg P2O5/da by OSU-142, to 5.36 kg P2O5/da by M3 and to 4.71 kg P2O5/da by OSU-142 + M3 treatments. The results of this study suggest that Bacillus M3 alone or in combination with Bacillus OSU-142 have the potential to increase the yield, growth and nutrition of raspberry plant under organic growing conditions

    Electrospark Deposition: Mass Transfer

    Get PDF

    Lycopene: Multitargeted Applications in Cancer Therapy

    Get PDF
    Cancer is an uncontrolled growth and division of cells, leading to significant morbidity and mortality and economic burden to the society. Natural products as anticancer molecules have drawn the attention of researchers and have resulted in the development of many successful anticancer drugs, which include camptothecins, epipodophyllotoxins, vinca alkaloids, and taxanes. Another group of compounds with anti-cancer effects include botanicals (phytochemicals) found in the diet. In recent years, a tomato carotenoid lycopene (LYC) has gained attention for its potential health benefits, especially in prevention and treatment of cancer. The studies suggest that the consumption LYC in food or by itself may reduce cancer risk. However, there are insufficient clinical trial data to support the hypothesis. LYC may play a preventive role in a variety of cancers, especially in prostate cancer. It acts by multiple mechanisms including the regulation of growth factor signalling, cell cycle arrest and/or apoptosis induction, metastasis and angiogenesis, as well as by modulating the anti-inflammatory and phase II detoxification enzymes activities. The effects can be attributed to the unique chemical structure of the carotenoid which confers it a strong antioxidant property. In this chapter, we discuss the chemopreventive and anti-cancer properties of LYC, a dietary carotenoid.

    A mutator phenotype promoting the emergence of spontaneous oxidative stress-resistant mutants in Campylobacter jejuni

    Get PDF
    Campylobacter jejuni is a leading cause of foodborne illnesses worldwide. As a microaerophilic organism, C. jejuni must be able to defend against oxidative stress encountered both in the host and in the environment. How Campylobacter utilizes a mutation-based mechanism for adaptation to oxidative stress is still unknown. Here we present a previously undescribed phenotypic and genetic mechanism that promotes the emergence of oxidative stress resistant mutants. Specifically, we showed that a naturally occurring mutator phenotype, resulting from a loss of function mutation in the DNA repair enzyme MutY, increased oxidative stress resistance (OXR) in C. jejuni. We further demonstrated that MutY malfunction didn\u27t directly contribute to the OXR phenotype, but increased the spontaneous mutation rate in the peroxide regulator gene perR, which functions as a repressor for multiple genes involved in oxidative stress resistance. Mutations in PerR resulted in loss of its DNA binding function and derepression of PerR-controlled oxidative stress defense genes, thereby conferring an OXR phenotype and facilitating Campylobacter survival under oxidative stress. These findings reveal a new mechanism that promotes the emergence of spontaneous OXR mutants in bacterial organisms

    Fitness of antimicrobial-resistant Campylobacter and Salmonella

    Get PDF
    Campylobacter and Salmonella are the most commonly reported bacterial causes of human foodborne infections, and increasing proportions of these pathogens become resistant to medically important antimicrobial agents, imposing a burden on public health. Acquisition of resistance to antibiotics affects the adaptation and evolution of Salmonella and Campylobacter in various environments. Many resistance-conferring mutations entail a biological fitness cost, while others (e.g. fluoroquinolone resistance in Campylobacter) have no cost or even enhanced fitness. In Salmonella, the fitness disadvantage due to antimicrobial resistance can be restored by acquired compensatory mutations, which occur both in vitro and in vivo. The compensated or even enhanced fitness associated with antibiotic resistance may facilitate the spread and persistence of antimicrobial-resistant Salmonella and Campylobacter in the absence of selection pressure, creating a significant barrier for controlling antibiotic-resistant foodborne pathogens

    Genomic Insights into Campylobacter jejuni Virulence and Population Genetics

    Get PDF
    Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics

    Learning and Using Context on a Humanoid Robot Using Latent Dirichlet Allocation

    Get PDF
    2014 Joint IEEE International Conferences on Development and Learning and Epigenetic Robotics (ICDL-Epirob), Genoa, Italy, 13-16 October 2014In this work, we model context in terms of a set of concepts grounded in a robot's sensorimotor interactions with the environment. For this end, we treat context as a latent variable in Latent Dirichlet Allocation, which is widely used in computational linguistics for modeling topics in texts. The flexibility of our approach allows many-to-many relationships between objects and contexts, as well as between scenes and contexts. We use a concept web representation of the perceptions of the robot as a basis for context analysis. The detected contexts of the scene can be used for several cognitive problems. Our results demonstrate that the robot can use learned contexts to improve object recognition and planning.Scientific and Technological Research Council of Turkey (TUBiTAK
    corecore