40 research outputs found

    Novel grading system for quantification of cystic macular lesions in Usher syndrome

    Get PDF
    International audienceBackground: To evaluate novel grading system used to quantify optical coherence tomography (OCT) scans for cystic macular lesions (CML) in Usher syndrome (USH) patients, focusing on CML associated alterations in MOY7A and USH2A mutations.Methods : Two readers evaluated 76 patients’ (mean age 42 ± 14 years) data prospectively uploaded on Eurush database. OCT was used to obtain high quality cross-sectional images through the fovea. The CML was graded as none, mild, moderate or severe, depending on the following features set: subretinal fluid without clearly detectable CML boundaries; central macular thickness; largest diameter of CML; calculated mean of all detectable CML; total number of detectable CML; retinal layers affected by CML. Intra-and inter-grader reproducibility was evaluated. Results : CML were observed in 37 % of USH eyes, while 45 % were observed in MYO7A and 29 % in USH2A cases. Of those with CML: 52 % had mild, 22 % had moderate and 26 % had severe changes, respectively. CML were found in following retinal layers: 50 % inner nuclear layer, 44 % outer nuclear layer, 6 % retinal ganglion cell layer. For the inter-grader repeatability analysis, agreements rates for CML were 97 % and kappa statistics was 0.91 (95 % CI 0.83-0.99). For the intra-grader analysis, agreement rates for CML were 98 %, while kappa statistics was 0.96 (95 % CI 0.92-0.99). Conclusions : The novel grading system is a reproducible tool for grading OCT images in USH complicated by CML, and potentially could be used for objective tracking of macular pathology in clinical therapy trials

    Flat Choroidal Nevus Inaccessible to Ultrasound Sonography Evaluated by Enhanced Depth Imaging Optical Coherence Tomography

    Get PDF
    Purpose: To demonstrate the usefulness of enhanced depth imaging optical coherence tomography (EDI-OCT) in investigating choroidal lesions inaccessible to ultrasound sonography. Methods: In a 60-year-old woman with an asymptomatic choroidal nevus, normal OCT was used to observe the macula and EDI-OCT to image the choroidal nevus that was inaccessible to ultrasound. The exact location of the lesion in the choroid and the dimensions of the nevus were measured. Results: The lesion was located in the superior macula, and the nevus was homogeneous in its reflectivity. We observed a thickened choroid delineated by the shadow cone behind it, measuring 1,376 × 325 µm in the larger vertical cut and 1,220 × 325 µm in the larger horizontal cut in an image with a 1:1 pixel mapping and automatic zoom. The macular profile and thickness were both normal. Conclusions: EDI-OCT appears to be an excellent technique for measuring choroidal nevi and all choroidal lesions accessible to OCT imaging by depicting their exact location in the choroid, their dimensions, and their demarcation from the surrounding healthy tissue, thus allowing for a more efficient and accurate follow-up

    Long-Term Follow-Up After Unilateral Intravitreal Gene Therapy for Leber Hereditary Optic Neuropathy: The RESTORE Study

    Get PDF
    Background: RESCUE and REVERSE were 2 Phase 3 clinical trials that assessed the efficacy and safety of intravitreal gene therapy with lenadogene nolparvovec (rAAV2/2-ND4) for the treatment of Leber hereditary optic neuropathy (LHON). RESTORE is the long-term follow-up study of subjects treated in the RESCUE and REVERSE trials. Methods: In RESCUE and REVERSE, 76 subjects with LHON because of the m.11778 G>A mutation in the mitochondrial gene ND4 received a single unilateral intravitreal injection of lenadogene nolparvovec. After 96 weeks, 61 subjects were enrolled in the long-term follow-up study RESTORE. The best-corrected visual acuity (BCVA) was assessed over a period of up to 52 months after onset of vision loss. A locally estimated scatterplot smoothing regression model was used to analyze changes in BCVA over time. Vision-related quality of life was reported using the visual function questionnaire-25 (VFQ-25). Results: The population of MT-ND4 subjects enrolled in RESTORE was representative of the combined cohorts of RESCUE and REVERSE for mean age (35.1 years) and gender distribution (79% males). There was a progressive and sustained improvement of BCVA up to 52 months after the onset of vision loss. The final mean BCVA was 1.26 logarithm of the minimal angle of resolution 48 months after the onset of vision loss. The mean VFQ-25 composite score increased by 7 points compared with baseline. Conclusion: The treatment effect of lenadogene nolparvovec on BCVA and vision-related quality of life observed 96 weeks (2 years) after treatment in RESCUE and REVERSE was sustained at 3 years in RESTORE, with a maximum follow-up of 52 months (4.3 years) after the onset of vision loss

    Loss of function of RIMS2 causes a syndromic congenital cone-rod synaptic disease with neurodevelopmental and pancreatic involvement

    Get PDF
    Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-progressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretinographic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative IRD

    Study Design and Baseline Characteristics for the Reflect Gene Therapy Trial ofm.11778g\u3eA/ND4-LHON

    Get PDF
    Objective REFLECT is the first randomised, double-masked, placebo-controlled multicentre phase 3 clinical trial that evaluated the efficacy and safety of bilateral intravitreal (IVT) injection of lenadogene nolparvovec in subjects with Leber hereditary optic neuropathy carrying the m.11778G\u3eA mutation. Methods and analysis A total of 98 subjects were enrolled with vision loss of ≤12 months. The subjects were randomised to one of two treatment arms with all subjects receiving an intravitreal (IVT) injection of lenadogene nolparvovec in their first affected eye and the second-affected eye randomised to receive IVT of either lenadogene nolparvovec or placebo. Results The majority of subjects were male with a mean duration of vision loss of 8.3 months. All but one subject experienced bilateral loss of vision at the time of injection. The mean best-corrected visual acuity of first-affected eyes was worse compared with second/not-yet-affected eyes. Analysis of retinal anatomical parameters showed increased thinning in the first-affected eyes when compared with the second/not-yet-affected eyes with both treatment arms showing significant changes compared with unaffected individuals. Conclusion The REFLECT trial is the third and the largest phase 3 clinical study evaluating lenadogene nolparvovec in m.11778G\u3eA Leber hereditary optic neuropathy (LHON) subjects. The observed demographics in REFLECT are consistent with previous reports in LHON subjects in the acute and dynamic phases of LHON disease. Combined with the visual function and anatomical parameters obtained in the previous RESCUE and REVERSE trials, REFLECT has provided a uniformly collected data set that should help direct future LHON clinical trials

    Functional Implication of Dp71 in Osmoregulation and Vascular Permeability of the Retina

    Get PDF
    Functional alterations of Müller cells, the principal glia of the retina, are an early hallmark of most retina diseases and contribute to their further progression. The molecular mechanisms of these reactive Müller cell alterations, resulting in disturbed retinal homeostasis, remain largely unknown. Here we show that experimental detachment of mouse retina induces mislocation of the inwardly rectifying potassium channels (Kir4.1) and a downregulation of the water channel protein (AQP4) in Müller cells. These alterations are associated with a strong decrease of Dp71, a cytoskeleton protein responsible for the localization and the clustering of Kir4.1 and AQP4. Partial (in detached retinas) or total depletion of Dp71 in Müller cells (in Dp71-null mice) impairs the capability of volume regulation of Müller cells under osmotic stress. The abnormal swelling of Müller cells In Dp71-null mice involves the action of inflammatory mediators. Moreover, we investigated whether the alterations in Müller cells of Dp71-null mice may interfere with their regulatory effect on the blood-retina barrier. In the absence of Dp71, the retinal vascular permeability was increased as compared to the controls. Our results reveal that Dp71 is crucially implicated in the maintenance of potassium homeostasis, in transmembraneous water transport, and in the Müller cell-mediated regulation of retinal vascular permeability. Furthermore, our data provide novel insights into the mechanisms of retinal homeostasis provided by Müller cells under normal and pathological conditions

    Lifting the iron curtain of vision

    No full text
    Ocular and specifically retinal toxicities of systemic medications are prevalent and encompass many disease modalities. For many of these pharmaceuticals, established follow‐up protocols are in place to ensure timely detection and cessation of therapy. However, while for some disorders, cessation of therapy is a viable option due to existing treatment alternatives, for some others cessation of treatment can be life threatening and/or shorten the patient's life expectancy. Such is the case for iron chelating agents used in transfusion‐dependent patients of Thalassemia, of which deferoxamine (DFO) is the most widely used. In their recent article in EMBO Molecular Medicine, Kong et al (2023) addressed the issue of DFO‐induced retinal toxicity used both in vivo and in vitro techniques. Their study suggests a potentially protective role for α‐ketoglutarate (AKG) supplementation against DFO toxicity

    Identification of gene expression changes associated with the progression of retinal degeneration in the rd1 mouse.

    Get PDF
    PURPOSE: One approach to gaining insight into the biological pathways contributing to rod and cone photoreceptor death is to identify patterns of gene expression changes. In the present study, a custom retinal microarray was developed to analyze the rd1 mouse, a well-characterized animal model of human retinal degeneration. METHODS: A microarray was constructed containing cDNA fragments corresponding to genes known or postulated to be involved in normal retinal function, development, and disease. Gene expression in rd1 retina was compared with age-matched control retinas at three time points: the peak of rod degeneration (postnatal day [P]14), early in cone degeneration (P35), and during cone degeneration (P50). Selected microarray results were confirmed with real-time PCR. The cellular distribution of one of the differentially expressed genes, dickkopf 3 (Dkk3), was assessed by in situ hybridization. RESULTS: At each stage of degeneration, there was only limited overlap of the genes that showed increased expression, suggesting the involvement of temporally distinct molecular pathways. Genes active in transport mechanisms and in signaling pathways were differentially expressed during rod degeneration, whereas genes with functions in protein modification and cellular metabolism were differentially expressed during cone degeneration. Increased expression of genes involved in cell proliferation pathways and oxidative stress was observed at each time point. CONCLUSIONS: These microarray results provide clues to understanding the molecular pathways underlying photoreceptor degeneration and indicate directions for future studies. In addition, comparisons of normal and degenerated retina identified numerous genes and ESTs that are potentially enriched in rod photoreceptors
    corecore