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Loss of Function of RIMS2 Causes a Syndromic
Congenital Cone-Rod Synaptic Disease with
Neurodevelopmental and Pancreatic Involvement

Sabrina Mechaussier,1,19 Basamat Almoallem,2,3,19 Christina Zeitz,4 Kristof Van Schil,2 Laila Jeddawi,5

Jo Van Dorpe,6 Alfredo Dueñas Rey,2 Christel Condroyer,4 Olivier Pelle,7 Michel Polak,8

Nathalie Boddaert,9 Nadia Bahi-Buisson,10 Mara Cavallin,11 Jean-Louis Bacquet,12

Alexandra Mouallem-Bézière,12 Olivia Zambrowski,12,13 José Alain Sahel,4,14,15,16,17

Isabelle Audo,4,14,18,20 Josseline Kaplan,1,12,20 Jean-Michel Rozet,1,20 Elfride De Baere,2,21,*
and Isabelle Perrault1,21,*

Congenital cone-rod synaptic disorder (CRSD), also known as incomplete congenital stationary night blindness (iCSNB), is a non-pro-

gressive inherited retinal disease (IRD) characterized by night blindness, photophobia, and nystagmus, and distinctive electroretino-

graphic features. Here, we report bi-allelic RIMS2 variants in seven CRSD-affected individuals from four unrelated families. Apart

from CRSD, neurodevelopmental disease was observed in all affected individuals, and abnormal glucose homeostasis was observed in

the eldest affected individual. RIMS2 regulates synaptic membrane exocytosis. Data mining of human adult bulk and single-cell retinal

transcriptional datasets revealed predominant expression in rod photoreceptors, and immunostaining demonstrated RIMS2 localization

in the human retinal outer plexiform layer, Purkinje cells, and pancreatic islets. Additionally, nonsense variants were shown to result in

truncated RIMS2 and decreased insulin secretion in mammalian cells. The identification of a syndromic stationary congenital IRD has a

major impact on the differential diagnosis of syndromic congenital IRD, which has previously been exclusively linked with degenerative

IRD.
Introduction

Retinal rod and cone cells are photosensitive neurons that

possess ribbonsynapses toprovide rapidandsustained trans-

mission of graded light responses to second-order neuron

bipolar and horizontal cells that shape the visual message

for the cortex.1 Genetic alterations affecting synaptic trans-

mission from photoreceptors to bipolar cells manifest in

congenital stationary night blindness (CSNB [MIM:

PS310500]). It is a rare but also overlooked retinal disorder

with an estimated prevalence of at least 1:40,000 (according

todatadrawnfromaFrenchcohort that included individuals

confirmed to have the disease). This form of CSNB can be

subdivided in complete (cCSNB) and incomplete (iCSNB)

forms.2 Whereas cCSNB affects mainly proteins located
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post-synaptically at the dendritic tips of on-center bipolar

cells (ON-bipolar cells), which are active when the light is

on, iCSNB affects mainly proteins located at the synapse of

photoreceptor cells.2 Affected individuals with iCSNB are

characterized by the dysfunction of both off-center bipolar

cells (OFF-bipolar), which are active when the light is off,

and ON-bipolar cells as shown in the electroretinogram

(ERG).2 Pathogenic variants in CACNA1F (MIM: 300110),3,

4 CABP4 (MIM: 608965),5 and CACNA2D4 (MIM: 608171)6

were identified in affected individuals with iCSNB.2 Of

note, in addition to the fact that phenotypic variability can

lead to mildly progressive inherited retinal disorders (IRDs),

stable low vision, nystagmus, andmore importantly, photo-

phobia might also be major symptoms in affected individ-

uals with variants in CACNA1F, CABP4, and CACNA2D4,2
netic Diseases, Imagine and Paris University, 75015 Paris, France; 2Center for

ity and Ghent University Hospital, 9000 Ghent, Belgium; 3Department of

ing Saud University, Riyadh, Saudi Arabia; 4Sorbonne Université, INSERM,
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and thus, the term iCSNBmight bemisleading.7,8 Therefore,

we use the term congenital cone-rod synaptic disorder

(CRSD).

The ocular presentation in infants might be reminiscent

of Leber congenital amaurosis (LCA [MIM: PS204000]), a

degenerative retinal disease that is a leading cause of child-

hood blindness; it has an estimated prevalence of 1:30,000.9

Occasionally, LCA can be the earliest manifestation of syn-

dromic disease, such as ciliopathies,10 neuro-metabolic dis-

orders,11 or tubulinopathies.12 ERG is a critical test for early

differential diagnosis. ERG responses are undetectable, in

keeping with the extremely severe rod and cone dysfunc-

tion in LCA. However in CRSD, ERG traces reveal general-

ized inner retinal dysfunction with bothON- andOFF-bipo-

lar cell dysfunction: normal photoreceptor function

manifests with an electronegative waveform in response

to a bright flash under dark adaptation and with severely

reduced and delayed light-adapted responses. However,

ERG recordings might be challenging in young children,

and this might contribute to a misdiagnosis of the ultra-

rare CRSD as the more prevalent LCA.

Here, a genomic study of individuals with IRD but an un-

resolved diagnosis revealed bi-allelic loss-of-function vari-

ants in regulating synaptic membrane exocytosis 2

(RIMS2 [MIM: 606630]) in seven affected individuals with

an initial diagnosis of CSNB or LCA and who were from

four unrelated families of Senegalese, French, and Saudi-

Arabian origin. Consistent with a role of RIMS2 in regu-

lating synaptic membrane exocytosis in the brain,

pancreas, and photoreceptors and with its localization in

human tissues, we demonstrated syndromic CRSD with

neurodevelopmental and possible pancreatic involvement

in individuals with bi-allelic mutations in RIMS2.
Materials and Methods

Subjects
This study involved seven affected subjects (three females and four

males) with early-onset IRD and five healthy relatives from four un-

related families. Families 1 and2were studied at Imagine-Necker-En-

fantsMaladesUniversityHospital. Affected individual III-3 of family

1 (F1:III-3 in Figure 1A)was also studied at theCentreHospitalierNa-

tional d’Ophtalmologie des Quinze-Vingts. Family 3 was clinically

studied at the Pediatric Ophthalmology Division at the Dhahran

Eye Specialist Hospital in Dhahran, Saudi Arabia, and Family 4 was

studied at the Centre Hospitalier National d’Ophtalmologie des

Quinze-Vingts. Family 1, referred for LCA, has an inbred Senegalese

pedigreewithseveral consanguinity loopsandthreeaffected individ-

uals over two generations (two adult sisters and the child of one of

them; the child was born to a first-cousin marriage). Family 2,

referred for LCA, comprises a single affected individual and his two

unrelated parents of Frenchorigin. Family 3 includes an affected sib-

ship born to a first-cousinmarriage and is from Saudi Arabia. Family

4,with a clinical diagnosis of CSNB, consists of a single affected indi-

vidual originating from first-degree cousins; the mother is Franco-

Senegalese, and the father is of Senegalese descent (Figure 1A). All in-

dividuals or legal representatives consented with the study, which

received approval from the institutional review boards Comité de
860 The American Journal of Human Genetics 106, 859–871, June 4,
Protection des Personnes Ile de France II (Necker), Ile de France V

(project number 06693, EudraCT number 2006-A00347-44, 11

December 2006, Quinze-Vingts), and Ghent University Hospital

Ethics Committee (B670201734438). Genomic DNA was extracted

from peripheral blood by standard procedures.

Genetic Analysis
The notation of the variants was based on RIMS2a transcript Gen-

Bank: NM_00134848.1, corresponding to the variant X5 transcript

for GenBank: XM_033203201 (version XM_033203201.1).

Gene-Panel Testing and Exome Sequencing
Families 1 and 2 underwent testing with a small IRD panel fol-

lowed by exome sequencing (ES). Genomic DNA libraries were

generated from DNA (F1:III-3, F1:III-5, F2:I-1, F2:I-2, and F2:II-2)

sheared with a Covaris S2 Ultrasonicator via SureSelectXT Library

Prep Kit (Agilent). Regions of interest (ROIs) were captured with

the SureSelect All Exon V5 kit (Agilent) and sequenced on an Illu-

mina HiSeq2500 HT system (Illumina). Data analysis was per-

formed with a homemade pipeline (POLYWEB)13 created by the

Imagine Institute Bioinformatics core facilities of Paris Descartes

University.

Whole-Genome Homozygosity Mapping and ES
DNA from F3:II-1 and F3:II-2 of family 3 were genotyped with the

HumanCytoSNP-12 BeadChip platform (Illumina). The genotypes

were evaluated for runs of homozygosity (ROH) >1 Mb via PLINK

software14 integrated in in-house software ViVar.15 Resulting ROH

were ranked according to their length and number of consecutive

homozygous single-nucleotide polymorphisms (SNPs).16 For ES,

exome enrichment and sequencing were performed with the Agi-

lent SureSelect Human All exon V5/V6 kit followed by paired-end

sequencing on a HiSeq2000 (2 3 100 cycles). The CLC Genomics

Workbench version 9.0.1 (CLCBio) was used for read-mapping

against the human genome reference (NCBI build37/hg19

version), post-mapping duplicate read removal, coverage analysis,

and quality-based variant calling via Alamut (visual version 2.7.2;

interactive biosoftware).

Targeted Testing of RIMS2
Forty-six affected individuals diagnosed with iCSNB and 133

affected individuals diagnosed with LCA underwent RIMS2 testing

either by Sanger sequencing (Big Dye Terminator v3.1 Kit, Applied

Biosystems) or targeted next-generation sequencing (Nextera XT

DNA Library Prep kit, MiSeq, Illumina) (Tables S1A and S1B). We

confirmed RIMS2 variants identified by ES, and we performed

segregation analysis by Sanger sequencing in all available family

members (Figure 1A).

RIMS2 Expression Studies in Human Tissues
Data Mining in Human Adult Single-Cell Retinal Transcriptional Da-

tasets

Data was processed for evaluating RIMS2 expression at the single-

cell (sc) level. The expression matrix derived from pooling three

donor neural retina samples17 was retrieved and imported into R

(v.3.6.2) with the Seurat sc analysis package (v3.1.4).18 We con-

ducted pre-processing and quality control to remove outlier cells.

We filtered out cells that had unique (gene) feature counts less

than 200 or greater than 2,500 and that expressed>5%mitochon-

drial counts. The dataset was subsequently normalized via the

built-in global-scaling normalization method ‘‘LogNormalize.’’
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Figure 1. Bi-allelic RIMS2a Variants in the Four Families and Location in RIMS2a, RIMS2b, and RIMS2g Isoforms and Domain Struc-
ture
(A) Pedigrees of families and segregation analysis of the variants. Positions of c.3126G>A (p.Trp1042*), c.2884C>T (p.Arg962*),
c.4363þ1G>A (p.?), c.3508C>T (p.Arg1170*), and c.1595C>G (p.Ser532*) substitutions corresponding to RIMS2a. The WTallele is rep-
resented by an equal sign.
(B) Diagram of the human RIMS2 showing positions of the c.1595C>G, c.2884C>T, c.3126G>A, c.3508C>T, and c.4363þ1G>A vari-
ants. RIMS2a, GenBank: NM_00134848.1 (GRCh38). RIMS2b, GenBank: NM_001348494.1 (GRCh38). RIMS2g, GenBank:
NM_001282882.1 (GRCh38). The positions of specific RIMS2a, -b, and -g promoters are located above the diagram.
(C) Diagram showing predicted protein domains in the three isoforms RIMS2a, RIMS2b, and RIMS3g; the positions of p.Ser532*,
p.Arg962*, p.Trp1042*, p.Arg1170*, and p.? variants correspond to the RIMS2a isoform. Abbreviations used: Zn2þ, N-terminal zinc finger
domain; PDZ, central PDZ domain; C2A and C2B, central and C-terminal C2 domains, respectively; PxxP, proline-rich sequence; asterisk,
SH3 domain-binding motif.
Prior to dimensional reduction, the data was subjected to scaling,

and heterogeneity associated with the number of unique molecu-

lar identifiers (UMIs) per cell and mitochondrial contamination

was regressed out. After quality control pre-processing, a total of

15,635 cells were kept and clustered via the K-nearest neighbor

graph method implemented in Seurat after PCA-reduction. We

applied the non-linear dimensional reduction technique UMAP

(uniform manifold approximation and projection)19 to visualize

and explore the dataset. As input, the same principal components

from the clustering analysis were used.We usedmarkers associated

with major neural retina cell populations to assess RIMS2 expres-

sion at the sc level.

Data Mining in Human Adult Bulk Retinal Transcriptional Datasets

Expression levels in terms of transcripts per million (TPM) were

retrieved from postmortem retina samples characterized in Ratnap-
The Ame
riya et al.20 A total of 453 samples that passed quality control were

considered first. In order to avoid introducing confounding vari-

ables in the downstream analysis, we selected only donor retinas

without age-related macular degeneration, resulting in 105 individ-

ual samples. For gene set selection, TPM values were further filtered

for a set of candidate genes, which included all genes reported to

cause IRD (RetNet) and genes identified in synaptic vesicle

pools and/or with pre- and post-synaptic-curated annotations

(SynGO).21 A total of 379 genes were eventually considered. For

normalization, stabilization, and statistics, prior to examining cor-

relations in the expression of the candidate genes, the set was

further filtered by both mean expression and variance. To remove

potential noise, we first filtered out the 25% of genes with the

lowest mean expression across all samples. We then subjected

the set to a variance-stabilizing transformation to correct for
rican Journal of Human Genetics 106, 859–871, June 4, 2020 861



mean-variance dependency;22,23 this resulted in a total of 289

genes’ being retained. We then examined the expression of RIMS2

and several synaptic genes (CACNA1F, CABP4, CACNA2D4, and

SV2B). For each gene pair, Spearman’s correlations were computed

along with pairwise p values adjusted for multiple comparisons

(Holm’s method). A matrix correlation plot was then generated

for visualization.

Expression Analysis

RT-qPCRwas performedwith the total RNAof fetal brain (22weeks),

retina (16weeks), andhead of the pancreas (25weeks) (RNeasyMini

Kit, QIAGEN), and for cDNA synthesis, random hexamer anchored

oligo(dT) primers were used (Verso cDNA Kit, Life Technologies

Thermo Fisher Scientific). Wemeasured RIMS2 expression by ampli-

fying138,78, and89bpfragments (TableS1C). Real-timePCRampli-

fication andnormalizationwereperformedasdescribed.24Datawere

analyzed with Realplex software (Eppendorf).

Immunohistochemistry

Human retinal, brain, and pancreatic tissues used for immunohis-

tochemistry were fixed in 10% neutral buffered formaldehyde and

embedded in paraffin. Staining for RIMS2was performed on 3-mm-

thick sections via an automatic immunostainer (BenchMark Ultra,

Ventana Medical Systems). The rabbit polyclonal antibody anti-

RIMS2 (1:25; Antibodies-Online: ABIN1003091) was used, and

visualization was achieved with the OptiView Amplification Kit

(Ventana Medical Systems). Heat-induced epitope retrieval was

performed with Cell Conditioning 2 (Ventana Medical Systems).
Functional Analysis of RIMS2 Nonsense Variants
Site-Directed Mutagenesis

Constructs were made for the following variants: c.1595C>G,

c.2884C>T, c.3126G>A, and c.3508C>T. We did this by using

mutagenesis via inverse PCR with Phusion polymerase and by us-

ing vector pcDNA3.1/(þ)-N-(K)-DYK-RIMS2a (RIMS2a, NM:

00134848.1; 10,277 bp) (Genscript) as a template. Primers can

be found in Table S1D. We digested the amplified product with

DpnI to avoid re-ligation of the original non-mutated DNA. We

amplified constructs in TOP10 Chemically Competent Escherichia

coli cells, and we sequenced inserts to assess the mutagenesis and

the rest of the sequence.

Immunoblot Analysis in HEK293 Cells

5 3 105 cells/well in 6-well plates were co-transfected with wild-

type (WT) or mutant FLAG-tagged RIMS2 plasmids (1.6 mg; Gen-

script) and the pCAGGS-GFP plasmid (400 ng; Clontech) with

the FuGene HD transfection reagent according to the manufac-

turer’s protocol (Promega). Proteins were prepared with radioim-

munoprecipitation assay (RIPA) lysis buffer (Life Technologies

Thermo Fisher Scientific). 50 mg of total proteins were resolved

by Mini-ProteanTGX Stain Free 4%–15% gel according to the rec-

ommendations of the supplier (BioRad). Proteins were transferred

to a polyvinylidene fluoride (PVDF)membrane via an RTATransfer

Kit (BioRad), and the membrane was probed with the following

primary antibodies: polyclonal goat IgG anti-DDDDK tag

(1:5,000; Abcam) and monoclonal mouse IgG1k anti-GFP

(1:2,000; Sigma Aldrich). Rabbit anti-goat IgG-HRP (1:2,000; Ab-

cam) and rabbit anti-mouse IgG-HRP (1:2,000; Abcam) were used

as secondary antibodies. Blots were developed with the Clarity

Western ECL and ChemiDoc XRSþ Imaging System (BioRad).

Immunoblot images were acquired and analyzed via Image Lab

Software 3.0.1 build 18 (BioRad). The abundance of FLAG relative

to GFP was estimated by densitometry with the Image Lab Soft-

ware 3.0.1 build 18. A Student’s t test was performed.
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Insulin Secretion Assay in MIN6B1 Cells

Clone B1 derived from Mouse insulinoma pancreatic 6 b-cells

(MIN6 B1) were seeded at 3 3 106 cells/well in 6-well plates and

co-transfected with WT or mutant FLAG-tagged RIMS2 plasmids

(2 mg, Genscript) and the pCAGGS-GFP plasmid (1 mg; Clontech)

via the FuGene HD transfection reagent according to themanufac-

turer’s protocol (Promega). GFP-expressing cells from cell pools

were sorted on a BD FACSAria II (BD Biosciences) with special or-

der research products (SORP) program. GFP-MIN6 B1 cells were

seeded at 5 3 104 cells/well in 96-well plates. After 1 h of DMEM

Glutamax I medium (5 mM glucose), the medium was replaced

by DMEM Glutamax I medium (25 mM glucose). Concentration

of insulin in the medium was determined with the Insulin Mouse

ELISA Kit (Invitrogen Thermo Fisher Scientific) after 25 min of in-

cubation. Absorbance was measured immediately at 450 nm and

550 nm by a VICTOR X4 2030 multilabel plate reader (Perki-

nElmer). Using Prism6 software, we determined the significance

of variations among samples via a one-way ANOVA with a post

hoc Tukey’s test.
Results

Identification of Bi-allelic RIMS2 Variants in Seven Cases

from Four Unrelated Families

Exome datasets were generated for affected siblings F1:III-3

and F1:III-5 and F3:II-1 and F3:II-2 and for affected individ-

ual F2:II-2 and his unaffected parents, F2:I-1 and F2:I-2

(Figure 1A). By applying stringent filtering, we found a to-

tal of seven and two candidate genes in family 1 and family

2, respectively (Table S2). This strategy revealed bi-allelic

RIMS2 variants (GenBank: XM_033203201) in the two

families: c.3126G>A (p.Trp1042*) in F1:III-3 and F1:III-5

(homozygous) and c.2884C>T (p.Arg962*) in trans with

c.4363þ1G>A (p.?) in F2:II-2. Similarly, homozygosity

mapping combined with ES in family 3 identified a homo-

zygous RIMS2 variant, c.3508C>T (p.Arg1170*), in the

largest 25 Mb autozygous region in F3:II-1 and F3:II-2 as

the most plausible candidate variant (Table S2). Of note,

no LOD score could be calculated as a result of the small

size of the family. Subsequent targeted RIMS2 testing of

pre-screened affected individuals with iCSNB identified

two affected individuals with a homozygous

RIMS2 variant: c.1595C>G (p.Ser532*) in F4:II-1 and

c.3126G>A (p.Trp1042*) in an affected individual that

retrospectively appeared to be related to family 1 (F1:III-

3) (Figures 1B and 1C). Co-segregation of the RIMS2 vari-

ants with the disease was confirmed (Figure 1A).

Clinical Re-evaluation of Affected Individuals

The complete lack of Rims2 in themouse has been reported

to cause behavioral anomalies, defective synaptic visual

signal transmission from photoreceptors to second-order

retinal neurons consistent with iCSNB, and insulin resis-

tance.25 In family 1, the affected individual F1:III-5 and

her elder, affected sister F1:III-3 were born to consanguin-

eous parents from Senegal and were reported to have man-

ifested nystagmus, poor visual function, and altered ERGs

around birth. Upon ophthalmological evaluation, the
2020



Figure 2. Clinical Presentation of Affected Individuals
(A) Representative ERG in affected individuals F1:III-3 and F1:III-5 carrying the homozygous c.3126G>A (p.Trp1042*) RIMS2 variant and
in affected individual F2:II-2 who is compound heterozygous with c.2884C>T (p.Arg962*) and c.4363þ1G>A (p.?) RIMS2 variants.
(B) Color fundus photographs of the right eye of affected individuals F1:III-3, F1:III-5, F2:II-2, F3:II-1, F3:II-2, and F4:II-1.
(C) Horizontal scan of macular spectral-domain optic-coherence tomography (macular SD-OCT) from the right eye of affected individ-
uals F1:III-3, F1:III-5, and F4:II-1. Anomaly is marked by a yellow arrow.
(D) Representative spectral-domain optical coherence tomography of the area surrounding the optic nerve with measure of the retinal
nerve fiber layer thickness (RNFL-SD-OCT) in affected individuals F1:III-3 and F1:III-5. Abbreviations used: TMP, temporal; SUP, superior;
NAS, nasal; INF, inferior.
(E) Representative MRI in affected individuals F1:III-5 and F1:IV-4. MRI, magnetic resonance imaging. Anomalies are marked by yellow
arrows.
sisters, currently aged 23 and 31 years and having had

myopic correction, displayed features of inner retinal

dysfunction: in response to a bright flash under dark-

adapted conditions such features included a preserved a-

wave (originating from photoreceptor hyperpolarization)

but a severely reduced b-wave (originating from ON-bipo-

lar depolarization) and severely reduced and delayed

light-adapted responses, in keeping with cone ON- and

OFF-bipolar cell dysfunction (Figure 2A). Funduscopy

showed optic disc pallor, moderate vascular attenuation,

normal macular area, and a normal mid-peripheral and pe-

ripheral aspect with no pigmentary migration (Figure 2B).

Spectral-domain optical coherence tomography (SD-OCT)

of the macular region revealed inner retinal thinning

throughout the posterior pole and a disruption of the

foveal ellipsoid line in F1:III-5 (Figure 2C), and SD-OCT
The Ame
of the retinal nerve fiber layer (RNFL) revealed a temporal

RNFL loss (Figure 2D). These data are consistent with a

cone-rod synaptic disorder with additional foveal changes.

Disc pallor, inner retinal changes, and thinned retinal ves-

sels have to be interpreted in the context of high myopia.

The eldest sister (F1:III-3) had a known history of persistent

elevated blood glucose since the age of 29 years, and fast-

ing blood glucose testing confirmed the diagnosis of insu-

lin-dependent diabetes mellitus (Table 1). Clinical neuro-

logic assessment and neuroimaging of the youngest

affected sister, F1:III-5, demonstrated autistic features

with unremarkable cerebral anomalies with the exception

of temporal optic-nerve atrophy. She displayed marked lip-

oatrophy with facial sparing, but the metabolic workup

was unremarkable; in particular, there was no resistance

to insulin and no alteration of blood-glucose homeostasis.
rican Journal of Human Genetics 106, 859–871, June 4, 2020 863



Table 1. Summary of Clinical Features of Seven Affected Individuals from Four Families with RIMS2 Variants

Individual F1:III-3 F1:III-5 F1:IV-4 F2:II-2 F3:II-1 F3:II-2 F4:II-1

Age (years) 33 25 2 7 7 6 9

Origin Senegal Senegal Senegal France Saudi Arabia Saudi Arabia France/Senegal

Ophthalmologic Features

Nystagmus þ þ erratic ocular
movement

erratic ocular
movement

þ þ þ

Photophobia þ þ þ þ þ þ þ

Night blindness � � � � � � þ

Visual
acuity (RE)

20/250 20/3200 NP 20/320 LP LP around 20/200

Visual
acuity (LE)

20/320 20/320 NP 20/320 LP LP around 20/200

Refractive
error (RE)

�2 (1.75) 90� �0.75
(1.25) 20�

þ2.25 þ6 NA NA �3 (�1) 175�

Refractive
error (LE)

�1 �2.50
(�2.25) 170�

þ3 þ6 NA NA �4.50 (�2) 170�

ERG
electronegativity

present present NP present NP NP present

Fundus optic disc pallor;
no peripheral
pigmentary
migration,
greyish retina

temporal optic
disc pallor;
no peripheral
pigmentary
migration

temporal optic
disc pallor; no
peripheral
pigmentary
migration

optic disc pallor;
no peripheral
pigmentary
migration

temporal
optic-disc pallor;
no peripheral
pigmentary
migration

temporal
optic-disc
pallor; no
peripheral
pigmentary
migration

temporal optic-disc
pallor; no peripheral
pigmentary
migration

Macular
SD-OCT

retinal thinning
at the expense
of inner retina

retinal thinning
at the expense
of inner retina;
retrofoveal focal
ellipsoid zone
disruption

NP retinal thinning
at the expense
of inner retina

NA NA normal

RNFL-SD-OCT NA (optic nerve
dysversion)

temporal
RNFL loss

NP NP NA NA NA

Autofluorescence normal normal NP normal NA NA normal

Neurologic Features

Neurological
examination

NP autistic behavior neuro
developmental
delay; general
movement
disorganization;
ataxia
manifestations;
poor language

autistic features:
stereotypies/OCD

severe autistic
behavior;
aggressivity;
anxiety;
no language

autistic
behavior;
poor language

neuro
developmental
delay, eventually
with no learning
disability; ataxia;
hyperactive and
mild autistic
behavior; delay
in language
acquisition

MRI normal normal dysmorphic
corpus callosum

normal NA NA normal

Metabolic Features

Fasting
blood glucose

insulin-dependent
diabetes mellitus

normal: 0.94 g/L NP normal: 0.85 g/L NP NP NP

Blood glucose hyperglycemia:
1.26 g/L

hyperglycemia:
1.13 g/L

hyperglycemia:
1.33 g/L

NP NP NP normal

Ophthalmologic, neurologic, and metabolic investigations in all affected individuals. Abbreviations used: CF, count fingers; LP, light perception; ERG, electroret-
inogram; RE, right eye; LE, left eye; BE, both eyes; SD-OCT, spectral-domain optical-coherence tomography; RNFL-SD-OCT, spectral-domain optical-coherence
tomographymeasuring the retinal nerve fiber layer thickness; MRI, magnetic resonance imaging; OCD, obsessive-compulsive disorders; NA, not available; NP, not
performed.
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Lipid homeostasis and liver function were also not altered.

Her affected son, F1:IV-4, was born to a first-cousin mar-

riage and presented at 13 months of age with severe visual

dysfunction and marked neurodevelopmental delay (poor

language, mild ataxia, general movement disorganization)

with a dysmorphic corpus callosum at brainmagnetic reso-

nance imaging (MRI; Figure 2E). The metabolic workup

was unremarkable (Table 1). The young individual IV-4 in

family 1 was born to a double-consanguineous marriage.

Because the familial RIMS2 pathogenic variant in IV-4

was found by targeted RIMS2 testing and not by whole-

exome sequencing (WES), we cannot rule out the possibil-

ity that dysmorphology of the corpus callosum is attrib-

uted to a homozygous pathogenic variant in another

gene because of this parental consanguinity.

Affected individual F2:II-2 was born at term after an un-

eventful pregnancy. He was first seen in ophthalmology at

2.5 months for pendular nystagmus, strabismus, and

photophobia. Upon examination, he presented with hy-

peropia, the inability to follow lights or objects, and a

normal fundus. At the age of 7 months, the poor quality

of ERG recording led to a presumed diagnosis of LCA. At

2 years of age, the child manifested behavioral problems

and an inability to walk without assistance. In addition

to nystagmus and photophobia, the ophthalmologist

noted some albinoid characteristics, including fair ashy

hairs, peripheral iris transillumination, and pale fundus.

Furthermore, bilateral active pupillary reflexes were pre-

sent, calling the initial ERG results and diagnosis of LCA

into question. However, ERG recordings could not be

repeated at that time because of high agitation. Geno-

type-directed clinical reexamination was conducted at

the age of 5.5–6 years. ERG recordings under general anes-

thesia revealed an electronegative waveform under limited

dark adaptation and barely detectable photopic responses,

consistent with iCSNB (Figure 2A). Funduscopy showed

optic nerve pallor and a normal mid-peripheral and pe-

ripheral aspect (Figure 2B). Neuropediatric assessment

showed autistic features, including stereotypies and obses-

sive-compulsive disorder (OCD). Neuroimaging with MRI

displayed no brain anomalies. The blood-glucose homeo-

stasis dosage was in the normal range (Table 1).

The two affected sibling of family 3 (F3:II-1 and F3:II-2)

were born to consanguineous Saudi Arabian parents and

displayed poor visual acuity reaching light perception in

both eyes, photophobia, pendular nystagmus, the absence

of pupillary response, and oculo-digital signs. Retinal im-

aging of both siblings showed a waxy pallor of the optic

discs and attenuated retinal vessels (Figure 2B). Both sib-

lings displayed autistic behavior witha variable degree of

severity: whereas the female younger sibling, F3:II-2 (3

years), could produce simple speech, the male sibling,

F3:II-1 (4 years), was not capable of speech and showed

aggressive and anxious behavior (Table 1), thus not allow-

ing for ERG recordings.

Affected individual F4:II-1 of family 4 was born to

consanguineous Senegalese parents. He was first referred
The Ame
to the electrophysiology unit when he was 2.5 years of

age for photophobia, nystagmus, and poor vision. He

was a premature (born at 33 weeks after amenorrhea)

twin baby, and his fraternal twin brother was exempt of

any relevant medical and ophthalmic history besides the

prematurity and a mild ataxia that developed while he

was starting to walk at 14 months of age. F4:II-1 had

been diagnosed with developmental delay with delayed

speech and walking; these delays were resolving upon

rehabilitation. After thorough psychomotor examination,

a diagnosis of attention disorder with hyperactivity within

the spectrum of autistic behavior was diagnosed; he had no

intellectual disability. His metabolic work-up was other-

wise normal. F3:II-1 was myopic and had a visual acuity

around 20/200 for both eyes at age 7 years (Table 1).

Fundus examination revealed a mild optic-disc pallor and

some vessel attenuation that could be attributed to the

myopia (Figure 2B). SD-OCT of the macula was normal

(Figure 2C). Fundus autofluorescence was normal. ERG re-

cordings revealed an electronegative waveform to a bright

flash in dark-adapted conditions as well as delayed and

reduced responses in light adaptation, leading to a diag-

nosis of iCSNB. The child manifested neurodevelopmental

delay with speech difficulties but no learning disability in

elementary school, an ataxic gait, and a certain degree of

hyperactive autistic behavior (Table 1).

RIMS2 Is Present in the Human Retina, Brain, and

Pancreas

Consistent with the neuro-ophthalmo-metabolic pheno-

type of the knock-out model, Rims2 is detected in mouse

retinal, brain, and pancreatic tissues (see BioGPS in Web

Resources). According to the human retinal transcriptome

dataset of the Ocular Genomics Institute, the Human Pro-

tein Atlas, and BioGPS, human RIMS2 is equally detected

in these tissues. Data mining of sc transcriptional datasets

of human adult neural retina showed that RIMS2 was pre-

dominantly expressed in rod photoreceptor clusters

(Figure S1A) and has an expression pattern similar to that

of CABP4 (Figure S1B). Next, we assessed the expression

patterns of RIMS2, CACNA1F, CABP4, CACNA2D4, and

SV2B in human adult bulk retinal transcriptional datasets

for coordinated correlation, reasoning that this could pro-

vide insight into potential regulatory interactions. A ma-

trix correlation plot (Figure S1C) showed RIMS2 expression

to be anti-correlated with CACNA1F (rho ¼ �0.3435,

p ¼ 0.002) and to be correlated with SV2B (rho ¼ 0.6565,

p< 0.0001). The latter is known to be localized in synaptic

vesicles, where it might function in the regulation of

vesicle trafficking and exocytosis.

In addition to a promoter located in the 50 UTR region

driving the longest RIMS2a transcript, the gene has two in-

ternal alternative promoters yielding shorter transcripts

(RIMS2b and RIMS2g) (Figure 1B). RT-qPCR analysis with

primers specific for each of the three isoforms applied to

fetal human tissues showed that all transcripts were ex-

pressed far more highly in the brain than in other tissues.
rican Journal of Human Genetics 106, 859–871, June 4, 2020 865



Figure 3. Expression Analysis of RIMS2 mRNA in Fetal Human
Tissues by Quantitative Real-Time PCR
Quantitative expression analysis in fetal human tissues. Error bars
reflect the standard errors of the mean (SEMs).
In the retina, the three transcripts seemed equally ex-

pressed. In the pancreas, RIMS2g had the highest expres-

sion, followed by RIMS2a then RIMS2b, whereas RIMS2a

expression was undetectable in fibroblasts; these non-

neuronal, non-secretory cells showed predominant

RIMS2g expression (Figure 3).

We assessed RIMS2 localization in adult human retina,

brain, and pancreas by immunostaining using an antibody

recognizing both RIMS2a and RIMS2b isoforms but not

RIMS2g. Strong and specific RIMS2 immunostaining was

observed in the outer plexiform retinal layer (Figure 4A),

cerebellar cortical neurons (more specifically in Purkinje

cells; Figure 4B), and pancreatic Langerhans islets

(Figure 4C). This localization is in agreement with the spec-

trum of oculo-cerebro-pancreatic anomalies in individuals

with bi-allelic mutant RIMS2 variants.

In Silico Predictions and In Vitro Functional

Characterization of RIMS2 Variants

Effect of a Splice Variant

The c.4363þ1G>A splice variant found in family 2 is the

only one out of five unique RIMS2 variants that is expected

to affect the three transcripts. In silico predictions suggest

the presence of an abolished consensus donor splice-site

leading to the skipping of the adjacent exon, a frameshift,

and the introduction of a premature termination codon

(c.4251_4363del [p.Asn1417Lysfs*2]). The insertion of a

stop codon in the shortest RIMS2g transcript most likely re-

sults in nonsense-mediated decay (NMD) and in the

absence of this an isoform. The mutant RIMS2a and

RIMS2b transcripts, however, might escape NMD and

lead to truncated isoforms (Figure S2).

Protein Abundance of Nonsense Variants

The four RIMS2 nonsense variants, however, are predicted

to produce normal RIMS2g and truncated RIMS2a and

RIMS2b. Consistent with this, immunoblot analysis using
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FLAG antibody of lysates from HEK293 cells overex-

pressing individually the WT, p.Ser532*, p.Arg962*,

p.Trp1042*, and p.Arg1170* FLAG-tagged RIMS2a cDNAs

revealed an �210 kDa protein and truncated isoforms of

expected �60, �120, �130, and �150 kDa sizes, respec-

tively (Figure 5A). TheWTand truncated FLAG-tagged pro-

teins were produced with the same intensity (Figure 5B).

When using the primary antibodies polyclonal rabbit IgG

anti-RIMS2 (1:1000; Synaptic Systems Cat. No. 140 303)

and monoclonal mouse IgG anti-b-actin (1:4000; Abcam)

and the secondary antibodies goat anti-rabbit IgG-HRP

(1:2000; Abcam) and goat anti-mouse IgG-HRP (1:2000;

Abcam), we detected no endogenous RIMS2a or RIMS2b

in lysates from untransfected HEK293 cells (Figure S3).

Insulin Secretion in MIN6B1 Cells

We investigated the ability of these truncated proteins that

lack all or most of the domain that interacts with RIM-

binding proteins 1 and 2 (RIMBP1 and RIMBP2) to pro-

mote insulin secretion in MIN6B1 cells. We overexpressed

the pCAGGS-GFP plasmid alone or in combination with

the WT or mutant FLAG-tagged RIMS2 constructs and

measured the accumulation of insulin in the culture me-

dium upon glucose stimulation. The amount of insulin

in the culture medium from cells transfected with

pCAGGS-GFP alone was in the same range as that in

medium from cells transfected with pCAGGS-GFP in com-

bination with the WT FLAG-tagged RIMS2a constructs,

suggesting that overexpression of WT RIMS2a does not

affect insulin secretion. In contrast, we observed a repro-

ducible reduction of insulin accumulation in cells

transfected with each of the three mutant constructs, sup-

porting that truncation of all or most of the RIMBP1- and

RIMBP2-binding domain alters insulin secretion in this

cellular system (Figure 6).
Discussion

The human visual system continues to develop after birth,

mainly in the first years of life. The differential diagnosis of

early-onset IRD, either stationary (CSNB) or degenerative

(LCA), might be challenging in the first months of life,

mainly as a result of individuals’ inability to respond

verbally to visual testing, the absence of apparent fundus

changes, the difficulties in cooperation for testing, espe-

cially in individuals with behavioral problems that might

lead to unreliable ERG recordings, and the presence of a

nystagmus, all of which, without general anesthesia,

hamper high-resolution retinal imaging. The identifica-

tion of the underlying genetic defect can accelerate an

early differential diagnosis between a stationary and

degenerative retinal disease because there is no genetic

overlap.

Here, we demonstrated the bi-allelic loss of function of

RIMS2 in a phenotype characterized by syndromic CRSD

with neurodevelopmental and pancreatic involvement,

consistent with a role of RIMS2 in regulating synaptic
2020



Figure 4. Immunohistochemistry of
RIMS2 in the Adult Human Brain, Pancreas,
and Retina
(A–C) Immunostaining of RIMS2 protein is
indicated in brown and showed by the ar-
rows in the retina (A), the brain (B), and
the pancreas (C). A specific RIMS2 antibody
targets a region of the RIMS2a form (Anti-
bodies-Online: ABIN1003091). Abbrevia-
tions used: GCL, ganglion cell layer; IPL, in-

ner plexiform layer; INL, inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; OLM, outer limiting membrane;
MWM, medulla of white matter; GrCL, granule cell layer; PCL, Purkinje cell layer; ML, molecular layer; PIL, pancreatic islet of Langer-
hans; A, acinus.
membrane exocytosis in the brain, pancreas, and photore-

ceptors. In regard to the retinal phenotype, visual acuity

seems low in our individuals with RIMS2-associated

CRSD and would be on the lower functional spectrum of

the high phenotypic variability spectrum of iCSNB, which

is characterized by a post-photoreceptor defect affecting

both the cone and rod signaling pathways.2 Indeed, in a se-

ries of 60 affected individuals carrying mutation in CAC-

NA1F, Boycott et al. report a high variability in visual

acuity in correlation with the presence of a nystagmus.26

In addition, for some of the affected individuals in our

study, behavioral disturbances made it difficult for us to

accurately measure visual acuity, which as a result, might

have been underestimated. Additionally, one of the

affected individuals presented here had foveal changes

that might have also hampered visual acuity. Similar

changes have been reported in association with CABP4

mutations.27 These changes were only present once in

our report, and further studies are needed to document

the frequency of this occurrence in RIMS2-associated

CRSD. Furthermore, one instance of inner retinal thinning

was also found in our series, and such thinning might also

contribute to poor visual acuity. This finding has also been

reported in association with iCSNB.28

RIMS2 is one of the Rab3-interacting molecules, or RIMs,

which aremulti-domain scaffolding proteins that were first

described as putative presynaptic active-zone proteins that

play an essential role in neurotransmitter release and are

located in the retinal photoreceptors.29–31 In vertebrates,

RIMs are encoded by four regulating synaptic membrane

exocytosis genes (RIMS1–RIMS4).30 Although Rims1a�/�

and Rims2a�/� mice are viable, the ablation of both genes

causes postnatal mortality as a result of a defective neuro-

transmitter release despite preserved synaptic structure

and exocytosis ability.32,33 Synapses of double mutants

contain active zones and release neurotransmitters, but

they cannot mediate normal Ca2þ-triggered release.32,33

The RIMS2-associated phenotype in affected human indi-

viduals is consistent with the known function of the

mouse ortholog in the photoreceptor ribbon synapse, con-

ventional chemical synapse, and synaptic-vesicle exocy-

tosis and with its localization in the outer retinal plexiform

layer,25 brain synapses,32 and pancreatic b cells.34

RIMS2 is the predominant large RIM isoform present at

photoreceptor ribbon synapses. RIMS2 plays an important
The Ame
role in maintaining the normal synaptic connection at the

ribbon synapse of the photoreceptors.1,25 This can be

achieved via several interactions required for synaptic

vesicle docking and priming.29 The majority of photore-

ceptor RIMS2 lacks the N-terminal zinc finger and part of

the RAB3A-binding domain, suggesting that photore-

ceptor synaptic transmission does not depend on full-

length RIMSa.25 The role of RIMS2 at photoreceptor ribbon

synapses is different from RIM function in most other

types of chemical synapses.35 At the photoreceptor ribbon

synaptic active zone, RIMS2 is not essential for vesicle

priming25 or Ca2þ channel clustering, but it does act as a

Ca2þ channel modulator.36 We assessed the influence of

Rims1 and Rims2 on synaptic processes at rod terminals

by generating a conditional double-knockout mouse

model in rod photoreceptors at as early as 3 weeks of age.

Deletion of Rims1 and Rims2 in mouse rods (called

Rims1/2 double knockout) showed a dramatic loss of

Ca2þ influx through Cav1.4 channels and an associated

reduction in evoked release.36 Both Rims isoforms were

shown to be expressed in the retina at as early as 3 weeks

of age. However, it has been shown that the Rims1-specific

antibody supports an absence of Rims1 from photorecep-

tors and their ribbon synapses in the outer plexiform layer

and that Rims1a does not contribute to the regulation of

exocytosis at the cone photoreceptor ribbon synapse.25

5 weeks later at 8 weeks, Rims2 was shown to be present

exclusively in the outer plexiform layer of WT mice,

whereas it was absent in the knockout mice. It was

concluded that Rims2 potently enhances the influx of

Ca2þ,which is vitally important for the release of vesicles

from the rod ribbon possibly through direct or indirect

modulation of the Cav1.4 channels.36–38 As Rims2 has

many partners that have not been linked with any human

or animal phenotype so far at the photoreceptor synapse

(synthesized in Figure 7),1,29,35,37–43 the genes encoding

them merit consideration in genomic studies of children

with congenital IRD.

In regard to the brain, Rims2, like Rims1, was shown to

be expressed at as early as 3 weeks of age in whole brain ly-

sates. Analysis of double knockout mice has demonstrated

expression of the two paralogs in overlapping but distinct

patterns throughout the brain.32,33 Here, we showed local-

ization of RIMS2 in human adult cerebellar cortical neu-

rons, more specifically in Purkinje cells. Of interest,
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Figure 5. Immunoblot Analysis of HEK293
Cells Overexpressing WT and Mutant
RIMS2
(A) Anti-RIMS2-FLAG antibody used to
reveal only exogenous protein production
in HEK293 cells. Anti-GFP antibody was
used as a control condition. The WT condi-
tion corresponds to an overexpression of
WT RIMS2 in HEK293 cells. The p.Ser532*,
p.Arg962*, p.Trp1042*, and p.Arg1170* con-
ditions correspond to an overexpression of
mutant RIMS2 in HEK293 cells. Expected
size bands are marked by dark stars.
(B) Relative quantification of RIMS2-FLAG
proteins in HEK293 cells by the measure-
ment of FLAG proteins compared to GFP
proteins. Error bars reflect the standard er-
rors of the mean (SEMs). *, p value < 0.5;
ns, non-significant p value R 0.5.

Figure 6. Insulin Secretion of MIN6 B1 Cells OverexpressingWT
and Mutant RIMS2 After 25 min of Incubation with Glucose
25 mM
TheWTcondition corresponds to an overexpression of WT RIMS2
in MIN6 B1 cells. The GFP condition corresponds to an overex-
pression of GFP as a basal expression reporter of RIMS2 in MIN6
B1 cells. The p.Arg962* (c.2884C>T), p.Trp1042* (c.3126G>A),
and p.Arg1170* (c.3508C>T) conditions correspond to an overex-
pression of mutant RIMS2 in MIN6 B1 cells. Insulin secretion is
measured at 25 min after the supply of glucose in medium cells
by ELISA. Error bars reflect the standard errors for the mean
(SEMs). ns, non-significant p value R 0.5.
involvement of RIMS2 in neurological disease, more specif-

ically in autism spectrum disease (ASD), is supported by a

genome-wide association study in affected individuals

with Asperger syndrome (ASPG [MIM: 608638]), revealing

a significant association with the RIMS2-associated SNP

rs2080610.44 A study on alternative splicing in neural tis-

sues showed that one of the RIMS2 transcripts contains a

highly-conserved micro-exon that is neuron-specific.45

RIMS2 has been listed as an ASD-associated gene in a

recently developed ASD database.46

Interestingly, a RIMS1 variant was found to co-segregate

with autosomal-dominant cone-rod dystrophy (CORD7

[MIM: 603649]) in a British family, implicating a gene

with a synaptic function in an IRD.47–49 In a mouse model

carrying the same Rims1 variant as the human CORD7

(p.Arg655His), the mutant was shown to modify Rims1

function in regulating voltage dependent Ca2þ channel cur-

rents.50 A Rims1 variant on different presynaptic voltage-

dependent calcium channels (VDCCs) might eventually

lead to CORD and enhanced cognitive abilities. Moreover,

RIMS1 has been associated with ASD by two independent

studies.51,52 Regarding RIMS2, a copy-number variant

(CNV), more specifically a duplication of 277 kb (Chr8:

104901578–105178819), was found in an individual

affected with autosomal-dominant retinitis pigmentosa

(adRP [MIM: 268000]). Although this CNV was found to

be absent in genomic databases, the role of this duplication

in the pathogenesis of adRP is still a matter of debate, espe-

cially because no segregation analysis could be performed in

the rest of the family, including the affected father.53

RIMS2 or RIMS1 variants have not been associated with

metabolic dysfunction before. Yet, RIMS2 has been identi-

fied by a yeast two-hybrid screen performed on pancreatic

b cells to determine docking and priming states in insulin

granule exocytosis.34 Consistently, Rims2�/�mice display a

phenotype that consists of anomalies of photoreceptor

synaptic transmission,25 deficit in maternal behavior,32,33

and insulin resistance.34 This retino-neuro-metabolic

phenotype is reminiscent of the RIMS2-associated disease

we report here. Whether abnormal glucose homeostasis
868 The American Journal of Human Genetics 106, 859–871, June 4,
is an invariable feature remains to be confirmed. Evidence

of insulin resistance in the eldest affected individual of our

cohort suggests that this could be an age-related feature,

and it will be important to perform a close follow-up of

metabolic functions.

In summary, bi-allelic loss-of-function variants of RIMS2

havebeenshowntocauseapreviouslyunreportedsyndromic

iCSNB,manifesting as aCRSDwithneurodevelopmental dis-

ease and occasional anomalies of glucose homeostasis. The

identification of a syndromic stationary congenital IRD has

a major impact on the differential diagnosis of syndromic

congenital IRD,whichhas previously beenexclusively linked

with degenerative IRD. Finally, our study implicates a photo-

receptor synaptic gene in syndromic disease.
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Figure 7. Schematic and Simplified Drawing of Protein Complexes Present at the Photoreceptor Ribbon Synapses
Presynaptic photoreceptor, synaptic cleft, and postsynaptic bipolar areas are shown. The names of proteins are indicated after dashes.
The names of protein domains are directly indicated on the protein drawing. Proteins that have already been implicated in CSNB are
indicated with an arrow. Abbreviations used: NT, neurotransmitters; iCSNB, incomplete form of congenital stationary night blindness;
cCSNB, complete form of congenital stationary night blindness; Ca2þ, calcium; Naþ, sodium.
Supplemental Data

Supplemental Data can be found online at https://doi.org/10.

1016/j.ajhg.2020.04.018.
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