3 research outputs found
Recommended from our members
4D printing technology in medical engineering: a narrative review
The addition of the time dimension to three-dimensional (3D) printing has introduced four-dimensional (4D) printing technology, which has gained considerable attention in different fields such as medical, art, and engineering. Nowadays, bioscience has introduced some ideas which can be fulfilled by 4D printing. Blending time with variations caused by the situation has many beneficial aspects such as perceptibility and adaptability. Since 4D printing can create a dynamic structure with stimuli-responsive materials, the applications of smart materials, stimulus, and 3D printing are the effective criteria in 4D printing technology. Smart materials with their flexible properties can reshape, recolor, or change function under the effect of the internal or exterior stimuli. Thus, an attractive prospect in the medical field is the integration of the 4D printing approach along with smart materials. This research aims to show the most recent applications of 4D printing technology and smart materials in medical engineering which can show better prospective of 4D printing applications in the future. Also, it describes smart medical implants, tissue engineering, and bioprinting and how they are being used for the 4D printing approach in medical engineering applications. In this regard, a particular emphasis is dedicated to the latest progress in the innovation and development of stimuli-responsive materials that are activated and respond over time to physical, chemical, and biological stimuli and their exploitation through 3D printing methods to fabrication 4D printing smart parts such as intelligent tissue-engineered scaffolds, smart orthopedic implants, and targeted drug delivery systems. On the other hand, major challenges in this technology are explained along with some suggestions for future works to address existing limitations. It is worth noting that despite significant research that has been carried out into 4D printing, it might be more valuable if some investigation is done into 4D bio-printing applications and how this approach will be developed
C3D data based on 2-dimensional images from video camera
The Human three-dimensional (3D) musculoskeletal model is based on motion analysis methods and can be obtained by particular motion capture systems that export 3D data with coordinate 3D (C3D) format. Unique cameras and specific software are essential for analyzing the data. This equipment is quite expensive, and using them is time-consuming. This research intends to use ordinary video cameras and open source systems to get 3D data and create a C3D format due to these problems. By capturing movements with two video cameras, marker coordination is obtainable using Skill-Spector. To create C3D data from 3D coordinates of the body points, MATLAB functions were used. The subject was captured simultaneously with both the Cortex system and two video cameras during each validation test. The mean correlation coefficient of datasets is 0.7. This method can be used as an alternative method for motion analysis due to a more detailed comparison. The C3D data collection, which we presented in this research, is more accessible and cost-efficient than other systems. In this method, only two cameras have been used
Analysing the Influential Parameters on the Monopile Foundation of an Offshore Wind Turbine
Countries around the world generate electricity from renewable resources to decarbonise their societies and reduce global warming. Some countries have already outlined their wishes to produce a part of their total energy consumption from renewable sources in the coming years and gradually reduce the use of nuclear energy and fossil fuel in favour of cleaner fuels. While renewable energies are significant factors in tackling climate change, the parameters that can influence their performance should be analysed in detail during the design process. One of these parameters is the foundation of an offshore wind turbine. Offshore wind turbines allow more energy to be produced than an onshore installation, and do not have any harmful effects on human beings, while their geotechnical aspects need to be clearly determined in advance. In this study, the influential parameters such as soil type, the number of bolts in the design, and the size of the structure were analysed using the finite element method for three different designs. The simulations showed that some soil properties, such as cohesion, do not influence the results, while Young’s modulus has a large influence on the designs. Additionally, the results of this study showed that the maximum stress concentrations are at the bolts and connection joints where they are too close to the steel’s yield stress. It also proves that the non-elastic behaviour of the soil does not require to be assigned for such analyses and it can be simplified only with its elastic behaviour. The embedded length affects the lateral displacement, while the number of bolts influences the structure’s resistance to external loads