12 research outputs found

    Complementary substrate specificity and distinct quaternary assembly of the Escherichia coli aerobic and anaerobic beta-oxidation trifunctional enzyme complexes

    Get PDF
    The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid beta-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily.Peer reviewe

    Structural basis for the different membrane binding properties of the Escherichia coli anaerobic and human mitochondrial β-oxidation trifunctional enzyme complexes

    No full text
    Facultative anaerobic bacteria such as Escherichia coli have two α2β2 heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the β-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-β as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-β is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-β dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities.Peer reviewe

    Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a putative oxygen sensor associated with RNA and carbohydrate metabolism

    No full text
    Abstract Human phytanoyl-CoA dioxygenase domain-containing 1 (PHYHD1) is a 2-oxoglutarate (2OG)-dependent dioxygenase implicated in Alzheimer’s disease, some cancers, and immune cell functions. The substrate, kinetic and inhibitory properties, function and subcellular localization of PHYHD1 are unknown. We used recombinant expression and enzymatic, biochemical, biophysical, cellular and microscopic assays for their determination. The apparent Km values of PHYHD1 for 2OG, Fe²⁺ and O₂ were 27, 6 and > 200 μm, respectively. PHYHD1 activity was tested in the presence of 2OG analogues, and it was found to be inhibited by succinate and fumarate but not R-2-hydroxyglutarate, whereas citrate acted as an allosteric activator. PHYHD1 bound mRNA, but its catalytic activity was inhibited upon interaction. PHYHD1 was found both in the nucleus and cytoplasm. Interactome analyses linked PHYHD1 to cell division and RNA metabolism, while phenotype analyses linked it to carbohydrate metabolism. Thus, PHYHD1 is a potential novel oxygen sensor regulated by mRNA and citrate

    Insights into the stability and substrate specificity of the E. coli aerobic β-oxidation trifunctional enzyme complex

    No full text
    Abstract Degradation of fatty acids by the β-oxidation pathway results in the formation of acetyl-CoA which enters the TCA cycle for the production of ATP. In E. coli, the last three steps of the β-oxidation are catalyzed by two heterotetrameric α₂β₂ enzymes namely the aerobic trifunctional enzyme (EcTFE) and the anaerobic TFE (anEcTFE). The α-subunit of TFE has 2E-enoyl-CoA hydratase (ECH) and 3S-hydroxyacyl-CoA dehydrogenase (HAD) activities whereas the β-subunit is a thiolase with 3-ketoacyl-CoA thiolase (KAT) activity. Recently, it has been shown that the two TFEs have complementary substrate specificities allowing for the complete degradation of long chain fatty acyl-CoAs into acetyl-CoA under aerobic conditions. Also, it has been shown that the tetrameric EcTFE and anEcTFE assemblies are similar to the TFEs of Pseudomans fragi and human, respectively. Here the properties of the EcTFE subunits are further characterized. Strikingly, it is observed that when expressed separately, EcTFE-α is a catalytically active monomer whereas EcTFE-β is inactive. However, when mixed together active EcTFE tetramer is reconstituted. The crystal structure of the EcTFE-α chain is also reported, complexed with ATP, bound in its HAD active site. Structural comparisons show that the EcTFE hydratase active site has a relatively small fatty acyl tail binding pocket when compared to other TFEs in good agreement with its preferred specificity for short chain 2E-enoyl-CoA substrates. Furthermore, it is observed that millimolar concentrations of ATP destabilize the EcTFE complex, and this may have implications for the ATP-mediated regulation of β-oxidation in E. coli

    Structural basis for different membrane-binding properties of E. coli anaerobic and human mitochondrial β-oxidation trifunctional enzymes

    No full text
    Abstract Facultative anaerobic bacteria such as Escherichia coli have two α₂β₂ heterotetrameric trifunctional enzymes (TFE), catalyzing the last three steps of the β-oxidation cycle: soluble aerobic TFE (EcTFE) and membrane-associated anaerobic TFE (anEcTFE), closely related to the human mitochondrial TFE (HsTFE). The cryo-EM structure of anEcTFE and crystal structures of anEcTFE-α show that the overall assembly of anEcTFE and HsTFE is similar. However, their membrane-binding properties differ considerably. The shorter A5-H7 and H8 regions of anEcTFE-α result in weaker α-β as well as α-membrane interactions, respectively. The protruding H-H region of anEcTFE-β is therefore more critical for membrane-association. Mutational studies also show that this region is important for the stability of the anEcTFE-β dimer and anEcTFE heterotetramer. The fatty acyl tail binding tunnel of the anEcTFE-α hydratase domain, as in HsTFE-α, is wider than in EcTFE-α, accommodating longer fatty acyl tails, in good agreement with their respective substrate specificities

    Structural enzymology binding studies of the peptide‐substrate‐binding domain of human collagen prolyl 4‐hydroxylase (type‐II):high affinity peptides have a PxGP sequence motif

    No full text
    Abstract The peptide‐substrate‐binding (PSB) domain of collagen prolyl 4‐hydroxylase (C‐P4H, an α2β2 tetramer) binds proline‐rich procollagen peptides. This helical domain (the middle domain of the α subunit) has an important role concerning the substrate binding properties of C‐P4H, although it is not known how the PSB domain influences the hydroxylation properties of the catalytic domain (the C‐terminal domain of the α subunit). The crystal structures of the PSB domain of the human C‐P4H isoform II (PSB‐II) complexed with and without various short proline‐rich peptides are described. The comparison with the previously determined PSB‐I peptide complex structures shows that the C‐P4H‐I substrate peptide (PPG)3, has at most very weak affinity for PSB‐II, although it binds with high affinity to PSB‐I. The replacement of the middle PPG triplet of (PPG)3 to the nonhydroxylatable PAG, PRG, or PEG triplet, increases greatly the affinity of PSB‐II for these peptides, leading to a deeper mode of binding, as compared to the previously determined PSB‐I peptide complexes. In these PSB‐II complexes, the two peptidyl prolines of its central P(A/R/E)GP region bind in the Pro5 and Pro8 binding pockets of the PSB peptide‐binding groove, and direct hydrogen bonds are formed between the peptide and the side chains of the highly conserved residues Tyr158, Arg223, and Asn227, replacing water mediated interactions in the corresponding PSB‐I complex. These results suggest that PxGP (where x is not a proline) is the common motif of proline‐rich peptide sequences that bind with high affinity to PSB‐II

    Expression and analysis of the SAM-dependent RNA methyltransferase Rsm22 from Saccharomyces cerevisiae

    No full text
    Abstract The Saccharomyces cerevisiae Rsm22 protein (Sc-Rsm22), encoded by the nuclear RSM22 (systematic name YKL155c) gene, is a distant homologue of Rsm22 from Trypanosoma brucei (Tb-Rsm22) and METTL17 from mouse (Mm-METTL17). All three proteins have been shown to be associated with mitochondrial gene expression, and Sc-Rsm22 has been documented to be essential for mitochondrial respiration. The Sc-Rsm22 protein comprises a polypeptide of molecular weight 72.2 kDa that is predicted to harbor an N-terminal mitochondrial targeting sequence. The precise physiological function of Rsm22-family proteins is unknown, and no structural information has been available for Sc-Rsm22 to date. In this study, Sc-Rsm22 was expressed and purified in monomeric and dimeric forms, their folding was confirmed by circular-dichroism analyses and their low-resolution structures were determined using a small-angle X-ray scattering (SAXS) approach. The solution structure of the monomeric form of Sc-Rsm22 revealed an elongated three-domain arrangement, which differs from the shape of Tb-Rsm22 in its complex with the mitochondrial small ribosomal subunit in T. brucei (PDB entry 6sg9). A bioinformatic analysis revealed that the core domain in the middle (Leu117–Asp462 in Sc-Rsm22) resembles the corresponding region in Tb-Rsm22, including a Rossmann-like methyltransferase fold followed by a zinc-finger-like structure. The latter structure is not present in this position in other methyltransferases and is therefore a unique structural motif for this family. The first half of the C-terminal domain is likely to form an OB-fold, which is typically found in RNA-binding proteins and is also seen in the Tb-Rsm22 structure. In contrast, the N-terminal domain of Sc-Rsm22 is predicted to be fully α-helical and shares no sequence similarity with other family members. Functional studies demonstrated that the monomeric variant of Sc-Rsm22 methylates mitochondrial tRNAs in vitro. These data suggest that Sc-Rsm22 is a new and unique member of the RNA methyltransferases that is important for mitochondrial protein synthesis

    Complementary substrate specificity and distinct quaternary assembly of the Escherichia coli aerobic and anaerobic β-oxidation trifunctional enzyme complexes

    No full text
    Abstract The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid β-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily
    corecore