1,759 research outputs found
Trajectories of Vegetation Response to Water Management in Taylor Slough, Everglades National Park, Florida
Ecosystem management practices that modify the major drivers and stressors of an ecosystem often lead to changes in plant community composition. This paper examines how closely the trajectory of vegetation change in seasonally-flooded wetlands tracks management-induced alterations in hydrology and soil characteristics. We used trajectory analysis, a multivariate method designed to test hypotheses about rates and directions of community change, to examine vegetation shifts in response to changes in water management practices within the Taylor Slough basin of Everglades National Park. We summarized vegetation data by non-metric multidimensional scaling ordination, and examined the time trajectory of each site along environmental vectors representing hydrology and soil phosphorus gradients. In the Taylor Slough basin, vegetation change trajectories closely followed the hydrologic changes caused by the operation of water pumps and detention ponds adjacent to the canals. We also observed a shift in vegetation composition along a vector of increasing soil phosphorus, which suggests the need for implementing measures to avoid P-enrichment in southern Everglades marl prairies. This study indicates that shifts in vegetation composition in response to changes in hydrologic conditions and associated parameters may be detected through trajectory analysis, thereby providing feedback for adaptive management of wetland ecosystems
Stand Density in South Florida Tropical Forests: Implications for the Function and Management of Everglades Tree Islands
Within the continental US, the broadleaved forests of south Florida are exceptional in the abundance and diversity of tree species of tropical origin. Dry tropical forests are regionally most extensive in the upper Florida Keys, but are also represented on the mainland as fragments on limestone rocklands, and as “tree islands” embedded in the Everglades marsh. The exposed Everglades tree islands have a history of human use reaching back thousands of years, and are subject to frequent disturbance from tropical storms and hurricanes. They are sensitive to the hydrology of the surrounding marsh, which can lead to gradual changes in species composition or stand structure, or to the sudden loss of the woody component entirely, especially when low water tables are precursors to damaging fires. Tree islands serve as local hotspots of biodiversity, and as concentrators of phosphorus in a landscape defined by P-limitation. The mechanisms by which P reaches the tree islands and is sequestered there are complex and not completely understood, but may depend in part on transpiration and resupply of water from the adjacent wetlands. Since transpiration is a direct function of the transpiring leaf surface, which itself is expected to vary with stocking, we examined the relationship between leaf area index and stand density in 16 Everglades tree islands. To determine maximum stocking levels for such forests, we also calculated stand density for tropical forests throughout south Florida, using a protocol modified slightly from Woodard et al. 2003. Our results suggest that (1) stand density in many Everglades tree islands is well below the expressed potential of similar tropical assemblages, (2) low site occupancy may prevent such under-stocked forests from performing several ecosystem functions, and (3) stand density can serve as an effective metric of forest condition for management or restoration purposes
Fluctuation induces evolutionary branching in a modeled microbial ecosystem
The impact of environmental fluctuation on species diversity is studied with
a model of the evolutionary ecology of microorganisms. We show that
environmental fluctuation induces evolutionary branching and assures the
consequential coexistence of multiple species. Pairwise invasibility analysis
is applied to illustrate the speciation process. We also discuss how
fluctuation affects species diversity.Comment: 4 pages, 4 figures. Submitted to Physical Review Letter
Functional properties and projections of neurons in the medial amygdala
The medial nucleus of the amygdala (MeA) plays a key role in innate emotional behaviors by relaying olfactory information to hypothalamic nuclei involved in reproduction and defense. However, little is known about the neuronal components of this region or their role in the olfactory-processing circuitry of the amygdala. Here, we have characterized neurons in the posteroventral division of the medial amygdala (MePV) using the GAD67-GFP mouse. Based on their electrophysiological properties and GABA expression, unsupervised cluster analysis divided MePV neurons into three types of GABAergic (Types 1-3) and two non-GABAergic cells (Types I and II). All cell types received olfactory synaptic input from the accessory olfactory bulb and, with the exception of Type 2 GABAergic neurons, sent projections to both reproductive and defensive hypothalamic nuclei. Type 2 GABAergic cells formed a chemically and electrically interconnected network of local circuit inhibitory interneurons that resembled neurogliaform cells of the piriform cortex and provided feedforward inhibition of the olfactory-processing circuitry of the MeA. These findings provide a description of the cellular organization and connectivity of the MePV and further our understanding of amygdala circuits involved in olfactory processing and innate emotions
Multi-Scaled Grassland-Woody Plant Dynamics in the Heterogeneous Marl Prairies of the Southern Everglades
The Everglades freshwater marl prairie is a dynamic and spatially heterogeneous landscape, containing thousands of tree islands nested within a marsh matrix. Spatial processes underlie population and community dynamics across the mosaic, especially the balance between woody and graminoid components, and landscape patterns reflect interactions among multiple biotic and abiotic drivers. To better understand these complex, multi-scaled relationships we employed a three-tiered hierarchical design to investigate the effects of seed source, hydrology, and more indirectly fire on the establishment of new woody recruits in the marsh, and to assess current tree island patterning across the landscape. Our analyses were conducted at the ground level at two scales, which we term the micro- and meso-scapes, and results were related to remotely detected tree island distributions assessed in the broader landscape, that is, the macro-scape. Seed source and hydrologic effects on recruitment in the micro- and meso-scapes were analyzed via logistic regression, and spatial aggregation in the macro-scape was evaluated using a grid-based univariate O-ring function. Results varied among regions and scales but several general trends were observed. The patterning of adult populations was the strongest driver of recruitment in the micro- and meso-scape prairies, with recruits frequently aggregating around adults or tree islands. However in the macro-scape biologically associated (second order) aggregation was rare, suggesting that emergent woody patches are heavily controlled by underlying physical and environmental factors such as topography, hydrology, and fire
Seasonal and Altitudinal Prevalence of Fascioliasis in Buffalo in Eastern Nepal
Buffalo is the most important livestock commodities for milk, meat production and several other multipurpose uses distributed densely from southern tarai to northern mid-hills in Nepal. Among several internal parasitic diseases fascioliasis is highly economic one caused by Fasciola in buffaloes. However, there are only few studies carried on prevalence of fascioliasis emphasizing buffaloes in relation to seasonal (summer and rainy, and winter) and altitudinal variations. Therefore, we examined prevalence of fascioliasis seasonally and vertically. For the purpose, we selected two districts of eastern Nepal and sampled from low altitude area known as Madhesha ranging from 175-200, Dhankuta from 800-1200 m, and Murtidhunga from 1800-2200 m elevation from the sea level, representing tarai, mid hills and high hills, respectively. Altogether from February 2013 to January 2014 at every two months interval we collected 798 fecal samples from buffaloes; 282 from Murtidhunga, 239 from Dhankuta and 277 from Madhesha. The samples were examined microscopically for the presence of Fasciola eggs using sedimentation technique. Results showed that overall prevalence of fascioliasis in buffaloes was 39.9% (319/798), ranging highest 42.6%in Madhesha followed by 39.7% in Murtidhunga and 37.2% in Dhankuta, respectively. The prevalence of fascioliasis was found to be significantly (p <0.05) high in winter (44.9%) comparing to rainy season (34.4%). The prevalence of fascioliasis in buffaloes was relatively higher in low altitude than high altitude, although it was not statistically significant (p <0.05). In our findings the female buffaloes showed higher prevalence for fascioliasis than in male. Since the fascioliasis in buffaloes is highly endemic, thus strategic deworming in high risk period is recommended along with measure to prevent pasture contamination with buffalo feces
Sustained attention in mild cognitive impairment with Lewy bodies and Alzheimer\u27s disease
\ua9 The Author(s), 2023. Published by Cambridge University Press on behalf of International Neuropsychological Society. Objective: Attentional impairments are common in dementia with Lewy bodies and its prodromal stage of mild cognitive impairment (MCI) with Lewy bodies (MCI-LB). People with MCI may be capable of compensating for subtle attentional deficits in most circumstances, and so these may present as occasional lapses of attention. We aimed to assess the utility of a continuous performance task (CPT), which requires sustained attention for several minutes, for measuring attentional performance in MCI-LB in comparison to Alzheimer\u27s disease (MCI-AD), and any performance deficits which emerged with sustained effort. Method: We included longitudinal data on a CPT sustained attention task for 89 participants with MCI-LB or MCI-AD and 31 healthy controls, estimating ex-Gaussian response time parameters, omission and commission errors. Performance trajectories were estimated both cross-sectionally (intra-task progress from start to end) and longitudinally (change in performance over years). Results: While response times in successful trials were broadly similar, with slight slowing associated with clinical parkinsonism, those with MCI-LB made considerably more errors. Omission errors were more common throughout the task in MCI-LB than MCI-AD (OR 2.3, 95% CI: 1.1-4.7), while commission errors became more common after several minutes of sustained attention. Within MCI-LB, omission errors were more common in those with clinical parkinsonism (OR 1.9, 95% CI: 1.3-2.9) or cognitive fluctuations (OR 4.3, 95% CI: 2.2-8.8). Conclusions: Sustained attention deficits in MCI-LB may emerge in the form of attentional lapses leading to omissions, and a breakdown in inhibitory control leading to commission errors
Recent Trends in Breeding of Tropical Grass and Forage Species
Germplasm enrichment in major tropical grasses and their characterization for emerging environmental challenges have been major focussed area in the recent past. Breeding efforts in tropical grasses are still limited to few selected species viz. Panicum spp, Cenchrus spp, Pennisetum spp and Bracharia spp and all other grasses use of land races for varietal development through selection have been major source of improvement. The pace of breeding efforts in the tropical grasses have been slowed because of many inherent characteristics viz. apomixis, poor seed set, high photo and thermo sensitivity often creating problem in designing and implementing an effective breeding programme. Identification of sexual lines using the modern tools of biotechnology have given new ways for the improvement in these group of crops. This paper provides overview of the recent development that has taken place in the germplasm collection, utilization and significant achievement made through genomic and biotechnological research
A cross-cultural comparison of the link between modernization, anthropomorphism and attitude to wildlife
Anthropogenic pressure has significantly increased in the last decades, often enhancing conflicts at the humanndash;wildlife interface. Therefore, understanding peoplesrsquo; value orientations, attitudes and behavioural intentions towards wildlife is a crucial endeavour to reduce the occurrence of conflicts between humans and wildlife. Previous research in the USA has shown a consistent link between modernization and increased anthropomorphism (i.e., the tendency to attribute human mental or physical characteristics to other entities), leading to positive changes in value orientations, attitudes, and behavioural intentions towards wildlife. In this paper, we aimed to address whether this link is also present in other cultures, by testing participants (N = 741) in five different countries (Brazil, Indonesia, Malaysia, Mexico, and Spain). Our study shows that while the positive link between anthropomorphism, positive attitudes and behavioural intentions towards wildlife is universal, the link between modernization and anthropomorphism is culturally mediated. In some countries (Indonesia, Malaysia, Spain), modernization increased anthropomorphism, while in others modernization predicted no differences (Brazil) or even a decrease in anthropomorphism (Mexico), ultimately deteriorating individualsrsquo; attitude and behavioural intentions towards wildlife. These results call for caution when generalizing findings from western industrialized countries to inform conservation policies worldwide
- …