58 research outputs found
Spreading of aqueous surfactant solutions on oil substrates: Superspreaders vs non-superspreaders
HypothesisThe question of why aqueous solutions of some surfactants demonstrate a rapid spreading (superspreading) over hydrophobic solid substrates, while solutions of other similar surfactants do not, has no definitive explanation despite numerous previous studies. The suggested hypothesis for this study assumes that once the spreading coefficient of surfactant is positive, there is a concentration range for solutions of any surfactant which demonstrates rapid spreading. As it is impossible to calculate spreading coefficients for solid substrates, we compare the spreading performance of known superspreaders and non-superspreaders on liquid (oil) substrate.ExperimentsThe kinetics of spreading of aqueous solutions of a series of branched ionic surfactants and non-ionic trisiloxane surfactants on two liquid substrates was studied and compared with the spreading of a surfactant-free liquid, silicone oil. Both dynamic and equilibrium spreading coefficients were calculated using measured surface and interfacial tensions.FindingsThere is no difference in spreading rate on liquid substrate between solutions of surfactants proven as superspreaders (while spreading on solid substrate) or non-superspreaders. A rapid spreading (superspreading) with the characteristic rate of spreading O(102–103) mm2/s occurs if the dynamic spreading coefficients exceeds the positive threshold value. If the dynamic spreading coefficient is negative or slightly positive, complete wetting still occurs, but the spreading is slow with the spreading rate is O(1) mm2/s. Spreading exponents for surfactant solutions in the rapid spreading regime are considerably larger than for the surfactant-free liquid. A number of spreading and dewetting patterns were observed depending on the surfactant type, its concentration and substrate
Superhydrophobic surfaces with low and high adhesion made from mixed (hydrocarbon and fluorocarbon) 3,4-propylenedioxythiophene monomers
International audienceThis work concerns new superhydrophobic surfaces, generated by replacing long fluorocarbon chains, which bioaccumulate, with short chains whilst at the same time retaining oleophobic properties. Here, is described the synthesis of novel original 3,4-propylenedioxythiophene derivatives containing both a short fluorocarbon chain (perfluorobutyl) and a hydrocarbon chain of various lengths (ethyl, butyl and hexyl). Superhydrophobic (contact angle water > 150° ) surfaces with good oleophobic properties (60° > contact angle hexadecane > 80° ) have been obtained by electrodeposition using cyclic voltammetry. Surprisingly, the lowest hystereses and sliding angles (Lotus effect) are obtained with the shortest alkyl chains due to the presence of microstructures made of nanofibers on the surfaces, whereas, the longest alkyl chains leads to nanosheets with high adhesion (Petal effect). Such materials are potential candidates for biomedical applications
Water-in-CO2 Microemulsions Stabilized by an Efficient Catanionic Surfactant
To facilitate potential applications of water-in-supercritical CO2 microemulsions (W/CO2 μEs) efficient and environmentally responsible surfactants are required with low levels of fluorination. As well as being able to stabilize water–CO2 interfaces, these surfactants must also be economical, prevent bioaccumulation and strong adhesion, deactivation of enzymes, and be tolerant to high salt environments. Recently, an ion paired catanionic surfactant with environmentally acceptable fluorinated C6 tails was found to be very effective at stabilizing W/CO2 μEs with high water-to-surfactant molar ratios (W0) up to ∼50 (Sagisaka, M.; et al. Langmuir 2019, 35, 3445−3454). As the cationic and anionic constituent surfactants alone did not stabilize W/CO2 μEs, this was the first demonstration of surfactant synergistic effects in W/CO2 microemulsions. The aim of this new study is to understand the origin of these intriguing effects by detailed investigations of nanostructure in W/CO2 microemulsions using high-pressure small-angle neutron scattering (HP-SANS). These HP-SANS experiments have been used to determine the headgroup interfacial area and volume, aggregation number, and effective packing parameter (EPP). These SANS data suggest the effectiveness of this surfactant originates from increased EPP and decreased hydrophilic/CO2-philic balance, related to a reduced effective headgroup ionicity. This surfactant bears separate C6F13 tails and oppositely charged headgroups, and was found to have a EPP value similar to that of a double C4F9-tail anionic surfactant (4FG(EO)2), which was previously reported to be one of most efficient stabilizers for W/CO2 μEs (maximum W0 = 60–80). Catanionic surfactants based on this new design will be key for generating superefficient W/CO2 μEs with high stability and water solubilization
Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites
The performance of single-, double- and triple-chain anionic sulphosuccinate surfactants for dispersing multiwall carbon nanotubes (MWNCTs) in natural rubber latex (NR-latex) was studied using a range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. The conductivities of the nanocomposites were also investigated using four-point probe measurements. Here, MWCNTs were efficiently dispersed in NR-latex with the aid of hyperbranched tri-chain sulphosuccinate anionic surfactants, specifically sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14). This paper highlights that TC14 performs much better than that of the commercially available surfactant sodium dodecyl sulphate (SDS), demonstrating how careful consideration of surfactant architecture leads to improved dispersibility of MWCNTs in NR-latex. The results should be of significant interest for improving nanowiring applications suitable for aerospace-based technology.Malaysia Toray Science Foundation (Grant 2012-0138-102-11)National Nanotechnology Directorate Division (Research Grant 2014-0015-102-03)Universiti Pendidikan Sultan Idris (Research Grant 2012-0113-102-01)Malaysia. Ministry of Education (Research Acculturation Grant Scheme. Grant 2013-0001-101-72)JEOL Ltd
Preparation of multiwall carbon nanotubes (MWCNTs) stabilised by highly branched hydrocarbon surfactants and dispersed in natural rubber latex nanocomposites
The performance of single-, double- and triple-chain anionic sulphosuccinate surfactants for dispersing multiwall carbon nanotubes (MWNCTs) in natural rubber latex (NR-latex) was studied using a range of techniques, including field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and Raman spectroscopy. The conductivities of the nanocomposites were also investigated using four-point probe measurements. Here, MWCNTs were efficiently dispersed in NR-latex with the aid of hyperbranched tri-chain sulphosuccinate anionic surfactants, specifically sodium 1,4-bis(neopentyloxy)-3-(neopentyloxycarbonyl)-1,4-dioxobutane-2-sulphonate (TC14). This paper highlights that TC14 performs much better than that of the commercially available surfactant sodium dodecyl sulphate (SDS), demonstrating how careful consideration of surfactant architecture leads to improved dispersibility of MWCNTs in NR-latex. The results should be of significant interest for improving nanowiring applications suitable for aerospace-based technology.</p
Shape Modification of Water-in-CO<sub>2</sub> Microemulsion Droplets through Mixing of Hydrocarbon and Fluorocarbon Amphiphiles
An oxygen-rich hydrocarbon (HC) amphiphile
has been developed as
an additive for supercritical CO<sub>2</sub> (scCO<sub>2</sub>). The
effects of this custom-designed amphiphile have been studied in water-in-CO<sub>2</sub> (w/c) microemulsions stabilized by analogous fluorocarbon
(FC) surfactants, nFGÂ(EO)<sub>2</sub>, which are known to form spherical
w/c microemulsion droplets. By applying contrast-variation small-angle
neutron scattering (CV-SANS), evidence has been obtained for anisotropic
structures in the mixed systems. The shape transition is attributed
to the hydrocarbon additive, which modifies the curvature of the mixed
surfactant films. This can be considered as a potential method to
enhance physicochemical properties of scCO<sub>2</sub> through elongation
of w/c microemulsion droplets. More importantly, by studying self-assembly
in these mixed systems, fundamental understanding can be developed
on the packing of HC and FC amphiphiles at water/CO<sub>2</sub> interfaces.
This provides guidelines for the design of fluorine-free CO<sub>2</sub> active surfactants, and therefore, practical industrial scale applications
of scCO<sub>2</sub> could be achieved
- …