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Abstract 

Hypothesis 

The formation, stability and structural properties of normal liquid phase microemulsions, 

stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted 

in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual 

water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a 

solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of 

this model for other types of microemulsions.  

Experiments  

In this paper, a High pressure Small-Angle Neutron Scattering (HP-SANS) study on w/c 

microemulsions is described using contrast variation to highlight scattering from the stabilizing 

fluorinated surfactant films: these data show clear evidence for spherical core-shell structures 

for the microemulsion droplets.  

Findings  

The results extend understanding of w/c microemulsions since previous SANS studies are based 

only on scattering from water core droplets. Here, detailed structural parameters for the 

surfactant films, such as thickness and film bending energy, have been extracted from the 

core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 

densities (~0.7 g cm-3), elongated cylindrical droplet structures have been observed, which are 

uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical 

micelles and droplets for applications of CO2, and viscosity enhancements are discussed. 

 

Keywords: microemulsions, supercritical CO2, fluorinated surfactants, film bending 

rigidity, small-angle neutron scattering   
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1. Introduction 

Supercritical CO2 (scCO2) has attracted increasing attention as a promising alternative for 

volatile organic solvents, due to its abundance, non-toxic, non-flammable, and 

non-hazardous properties which make CO2 a strong candidate for use as a green solvent. 

However, due to the low dielectric constant1,2 (~1.33 at 200 bar, 350 K), scCO2 is generally a 

very poor solvent, in particular for polar and high molecular weight solutes. On the other 

hand, emulsions and microemulsions have been widely accepted as effective media to 

stabilize immiscible components, such as water and oil3,4. Studies have been carried out 

extensively for water-in-scCO2 (w/c) microemulsions over the last two decades, ever since 

Beckmann et al.1 suggested that a twin fluorocarbon tailed surfactant should exhibit CO2 

activity. Guided by this hypothesis, Harrison et al.2 successfully formulated stable w/c 

microemulsions with H7F7, a hydrocarbon-fluorocarbon hybrid anionic surfactant. A series 

of fluorinated surfactants have been developed by Sagisaka et.al5,6,7 based on the structure 

of Aerosol OT (AOT), a di-chain surfactant which has been widely applied to formulate water 

in oil microemulsions 3. Some of these custom designed CO2 compatible surfactants have 

exhibited very high efficiencies for stabilization of w/c microemulsions, with the highest 

water: surfactant ratio (i.e. W=[water]/[surf]) up to 60. Efforts have also been made to 

formulate hydrocarbon surfactants as cheaper and more environmentally viable substitutes 

for fluorinated amphiphiles. Experiments with a number of AOT analogues, bearing different 

oxygenated hydrocarbons have shown promising results8. Eastoe et.al9 have also reported 

formation of w/c microemulsions with highly branched hydrocarbon surfactants. More work 

on theoretical studies and practical applications with w/c microemulsions has been 

described in a number of reviews10,11,12, and interested readers are referred elsewhere for 
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details. 

Small-Angle Neutron Scattering (SANS) is a powerful technique to study the assembly, 

alignment, dispersion and mixing of nanoscale condensed matter typically over length scales 

1-50 nm 3. A strength of SANS is the ability to determine statistically significant bulk average 

particle properties in situ. More importantly, due to the high contrast between different 

components containing hydrogen (1H) and deuterium (2H), and by controlling isotopic 

labeling the domains of interest, different nano-compartmentalized systems can be 

highlighted for detailed analysis13. Based on Johnston et al.’s phase studies2, Eastoe et al14. 

applied High-Pressure SANS (HP-SANS) to D2O/scCO2 systems for the first time. A spherical 

structure was observed for the (micro)emulsified water cores, which provided the first direct 

evidence for the formation of w/c microemulsions14. Having shown the feasibility of using 

HP-SANS to characterize w/c microemulsions, this technique has been frequently applied in 

later studies with different surfactants6,8,15 and structures16,17,18. In most of these studies, 

the microemulsion structures were determined only based on scattering from D2O cores, 

and this is due to the difficulty of contrast variation in w/c systems. In particular, isotopic 

variation with C and O is very expensive, but even though it does not shift the contrast of 

the eternal CO2 bulk sufficiently as can be readily done with hydro/deutero-carbons. 

Although important information such as shape and size of the droplet cores could still be 

obtained, some of the detailed structural and interfacial properties of the surfactant film in 

w/c systems remained inaccessible. Recently, Klostermann et al. have investigated a series of 

CO2-in-water (c/w) microemulsions stabilized by commercial polydisperse perfluorinted 

polyethelyneglycol surfactants Zonyl FSN 100 and Zonyl FSO 10019. Due to the technical 
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nature of the surfactants, the exact chemical composition, and therefore, the scattering 

length densities (SLD) of the surfactants are less well defined. However, contrast variation 

was performed by mixing heavy and light water (D2O and H2O) as the solvent bulk in order to 

determine the SLD of the surfactant film. In the study, a secondary peak was found on the 

scattering form factor P(Q) at a H2O/D2O composition ratio of ~0.68, which is usually 

considered as an important feature characteristic of core-shell particles. 

This study aims to investigate the core-shell structure of w/c microemulsions in detail by 

using a similar contrast variation strategy as Klostermann et al.19. Here, however chemically 

pure fluorinated AOT analogue anionic surfactants were used, in contrast to the polydisperse 

commercial grade non-ionic stabilizers used in ref 17. Using these well-defined systems, 

SANS was not affected by uncertainties that arise from inter-particle interactions, or 

complex structures in the surfactant layers. Hence, it has been possible to examine 

core-shell form factors to generate unique interfacial information which can be compared 

with literature data on other hydrocarbon-based microemulsions. This current study furthers 

understanding about w/c microemulsion structures and properties, which is useful for 

improving design of new CO2-compatible surfactants and applications of w/c systems. 
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2. Experimental 

2.1 Materials and compositions: Two fluorinated surfactants in the nFS(EO)2 series with n=4 

and 6 have been used to formulate w/c microemulsions, their structures are presented in 

Table.1. The details of surfactant synthesis, purification and characterization can be found 

elswhere6. The concentration of surfactant is quoted in molarity units taking into account 

the known changes in cell volume as function of CO2 pressure: (0.017 mol L-1 in a 20 ml 

volume at P = 120 bar increasing to 0.025 mol L-1 in 12 ml volume after compression to P = 

350 bar, all experiments at 45C).The composition parameter W = [water]/[surfactant].  All 

components are obtained with well-defined densities, dCO2 =0.68 - 0.91 g cm-3 (depending on 

pressure)20, and dsurfactant=1.7 g cm-3 as a typical fluorinated compound21. From the mass 

density and bound coherent scattering lengths of the isotopes, the SLD of each component 

can be calculated and constrained for fitting (ρsurfactant=3.5×10-6Å-2, ρD2O=6.3×10-6Å-2, 

ρCO2=1.6×10-6Å-2 when dCO2 =0.68 g cm-3, and 2.3×10-6Å-2 when dCO2 =0.92 g cm-3) It should be 

noted that the SLD for the water cores of microemulsion droplets is varied through H2O/D2O 

mixing, and the actual values are noted in appropriate sections below.  

Surfactant Structures 

4FS(EO)2 

 

6FS(EO)2 

 

Table 1. Structures of surfactants used. 
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2.2 Pressure cell: All samples were prepared in a stainless steel cell with variable volume 

(12-20 ml) controlled by a piston with an external hydraulic pump. Once filled with CO2, the 

pressure was measured by a built-in pressure probe with accuracy ±1 bar. Two sapphire 

windows fitted in parallel allow for visual observations of phase behavior. Temperature was 

controlled to 45 °C by both a heating circuit and water bath in the cell body. 

In order to obtain a w/c microemulsion, an appropriate amount of pre-weighed surfactant 

and D2O/H2O mixture was fed into the cell to establish the molar ratio W (=[water]/[surf]) of 

interest. Subsequently, the cell was sealed and liquid CO2 was introduced at ~5°C and 

re-equilibrated at 45°C in the cell under magnetic stirring. The inlet line was closed once the 

pressure reached 120 bar, and under these conditions CO2 has reached a supercritical state. 

The pressure could be further increased using a hydraulic pump, up to a maximum of 450 

(±5) bar, which allowed stable w/c microemulsions to be formulated with different W ratios. 

 

2.3 SANS: SANS measurements were performed using instruments LOQ22 and SANS2D23 at 

the ISIS spallation source, Rutherford Laboratory, UK. Results are presented in terms of the 

intensity (I(Q)) as a function of scattering vector Q, which is defined as 

Q =
4𝜋

𝜆
𝑠𝑖𝑛

𝜃

2
       (1) 

where θ is the scattering angle and λ the incident neutron wavelength. SANS2D spans a Q 

range of 0.002 < Q < 1 Å-1 with neutron wavelength λ of 2.2-10 Å-1, whereas for LOQ, 0.008 < 

Q < 0.25 Å-1 and λ is within the range 2-14 Å-1. The path length was 10 mm. All scattering 

data were normalized for the sample transmission, empty cell and solvent background and 

put on an absolute intensity I(Q)/cm-1 scale using standard procedures, resulting in errors in 
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intensity I(Q) lower than 5%.24 Once w/c microemulsions were obtained at the appropriate 

conditions, the systems were equilibrated with stirring for 5 min before SANS measurements 

were made. 

2.4 Scattering Theory: The relationship between scattering vector and intensity I(Q) can be 

described as follows25: 

I(Q) = 𝑁𝑝𝑉𝑝
2(∆𝜌2)𝑃(𝑄)𝑆(𝑄) + 𝐵𝑖𝑛𝑐   (2) 

Np is the number concentration of scattering particles, Vp is the particle volume, Δρ is the 

difference of scattering length density between the scattering body and the solvent, P(Q) is 

the form factor which describes the internal structure of scattering particles. S(Q) is the 

structure factor which describes interactions between particles, and Binc is the background 

incoherent scattering. 

It should be noted that the form factor P(Q) is not only dependent on the shape of 

microemulsion droplets, but also the scattering contrast arising from different scattering 

length density (SLD, or ρ) between adjacent phases. Moreover, hydrogen and deuterium 

have very different bound coherent scattering lengths, and therefore, by appropriate 

deuterium isotopic doping the desired contrast can be highlighted from the core, shell, or 

the whole droplet, enabling study of specific domains. For w/c microemulsions, however, 

contrast variation is more difficult than for w/o systems, due to the fact that CO2 and most 

CO2 active surfactants cannot be easily subject to isotopic labeling; hence most studies on 

such systems are only based on core scattering profiles using pure D2O as the contrast agent. 

As a result, important information, such as shell thickness or droplet polydispersity cannot 

be obtained with confidence from the scattering profile. The data were analyzed by the 
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fitting program SASview using a spherical core-shell form factor model with a Schultz 

polydispersity term26,27. No structure factor (S(Q)) has been considered due to the low 

surfactant concentration and low dielectric constant of the CO2 solvent. 

 

Figure 1. A schematic plot the cross section of a microemulsion droplet, and below the SLD 

profiles designed for experiments 1a. a typical core-shell structure for hydrocarbon-based 

w/o microemulsions using D2O/H-surfactant/D-solvent contrast3,4; 1b. 

D2O/F-surfactant/CO2 microemulsion at 350 bar, 45˚C and 1c. the contrast applied in this 
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work to obtain the core shell structure of w/c microemulsions using mixed H2O/D2O. 

 

3. Results and discussion 

3.1 Spherical and core-shell systems: Scattering data for the 6FS(EO)2/scCO2 microemulsions 

doped with D2O and a H2O/D2O mixture (mass ratio 7:3 which gives ρcore
SLD=1.51×10-6 Å-2 ) 

have been compared at W20. As shown in Figure 2, the nanodroplets with pure D2O cores 

scattered with a similar profile as simple spherical particles, whereas for the w/c 

microemulsions with H2O/D2O mixed cores, a core-shell scattering profile was obtained with 

a distinctive peak at high Q.  

 

Change to read angstrom -1  

Figure 2 Scattering profiles for w/c microemulsions stabilized by 6FS(EO)2 at 350 bar, 45˚C. 

Pure D2O and a H2O/D2O mixture (mass ratio 7:3) was added to each sample giving water: 

surfactant ratio=20. The scattering data are well fitted with a Schultz core-shell spherical 

model (lines). 

Both scattering profiles can be fitted to a Schultz spherical core-shell model and the fitting 

parameters are compared in Table 2. Although the structures of the pure D2O core system 

are in good agreement with H2O/D2O mixed systems, the surfactant layer thickness was 
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obtained with better precision with from the H2O/D2O mixed samples. Furthermore, the 

uncertainty in polydispersity is also significant with the pure D2O core systems, as even if 

manually adjusted in large steps, it does not appear to have significant effect on the fitting. 

Core Rc /Å Thickness /Å 
𝜎

𝑅𝑎𝑣
⁄  

H/D mixed 20 (±1) 9 (±1) 0.18 (±0.01) 

D2O 19 (±1) 8 (±4) 0.23 (±0.12)* 

Table 2. Fit parameters for the w/c microemulsions stabilized by 6FS(EO)2 from Figure 2 

with two types of core (pure D2O and a H2O/D2O mixture), both systems were analyzed 

using a spherical core-shell model. As noted in earlier sections, the data are fitted with 

constrained parameters ρsurfactant=3.5×10-6Å-2, ρcore=1.5×10-6Å-2, ρCO2=2.3×10-6Å-2. The 

adjusted parameters were core radius Rc, thickness and polydispersity 𝜎
𝑅𝑎𝑣

⁄ . The volume 

fraction was also an adjustable parameter, and for both systems ~0.008 was obtained in 

the fits. 

*  it should be noted again that the errors obtained in the brackets are obtained by fitting 

the data points with given scattering profiles, though from the actual fitting, the 

polydispersity could range from 0.2 towards 0.4, giving significant uncertainties. 

 

3.2 Effect of W ratio: The core-shell structure has been studied for 6FS(EO)2 stabilized w/c 

microemulsions with increasing core radius as water ratio W was increased from 10 to 30 

(Figure 3). Using the mixed H2O/D2O as water core gave core-shell features in the scattering 

profiles, and maxima/minima shifting towards lower Q with increasing water content. 

Interestingly, it has also been found that not only the peak position moves, but also the 
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intensity of peak increases with core radius. 

It should be noted that, the W10 system appears to give a smeared primary and secondary 

peak, which is attributed to a high polydispersity (σ/Rav~0.30) by fitting. However, this may 

actually due to the limit of resolution for such small core sizes in the examined contrast. In a 

parallel experiment, a greater core-shell contrast was obtained with reduced core SLD 

(ρcore=0.84×10-6), and a clear core-shell scattering profile was obtained giving better 

confidence on the polydispersity σ/Rav~0.19. In Figure 3, core radius (Rc) is also plotted as a 

function of W ratio and is well-fitted to a linear swelling law: the repeat experiment (circled 

point) gave better consistency compared with the data point below at lower resolution. 

 

Figure 3. Scattering profiles for w/c microemulsions stabilized by 6FS(EO)2 (3a) and 

4FS(EO)2 (3b) with a series of W values. SANS measurements were taken at 350 bar, 45˚C, 

which is a bulk density dCO2 ~0.91 g cm-3. The core radius is also plotted as a function of W 
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for both systems (the circled data point for 6FS(EO)2 at W=10 was taken from a parallel 

experiment with enhanced core-shell contrast as described in the main text), and linear 

correlations were obtained as predicted by a standard spherical swelling law2,3,28.  
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3.3 Effect of surfactant chain length: The core-shell structure of w/c microemulsions 

stabilized by a shorter chain surfactant, 4FS(EO)2, and the changes of intensity between 

primary and secondary peaks become more significant after addition of water, as compared 

to the 6FS(EO)2 systems (Figure 3b). Fitted parameters for the contrast variation experiments 

can be found in Supporting Information (Table S1): but the film thicknesses are 6 Å, i.e. 

lower than the 9 Å for 6FS(EO)2. This can be explained as a result of increasing relative 

significance of scattering from the core, which is either enhanced by increasing size of the 

core relative to the entire particle, or owing to enhanced core-shell contrast (see supporting 

material, Figure S2). Furthermore, the polydispersity was also found to be higher in general 

compared to the 6FS(EO)2 stabilized w/c microemulsions, which could be a result of a lower 

film bending rigidity, as discussed in detail in section 3.5 below. 

The radius of w/c microemulsion droplets (Rc) has been plotted against W for both 4FS(EO)2 

and 6FS(EO)2 systems, and fitted to a linear swelling law for polydisperse spherical droplets: 

𝑓 (
𝜎

𝑅𝑎𝑣
) ∙ 𝑅𝑐 =

3𝑉𝑤

𝐴ℎ
𝑊 +

3𝑉ℎ

𝐴ℎ
     (4) 

where 𝑉𝑤 is the volume of a water molecule, 𝐴ℎ and 𝑉ℎ are the interfacial area and 

volume per surfactant headgroup, and 𝑓 (
𝜎

𝑅𝑎𝑣
)  is described as 𝑓 (

𝜎

𝑅𝑎𝑣
) = 1 + 2(

𝜎

𝑅𝑎𝑣
)2 

where 
𝜎

𝑅𝑎𝑣
 is the polydispersity of microemulsion droplets. The headgroup area was 

calculated for both surfactant systems giving 133 ± 5 Å2 for 6FS(EO)2 and 𝐴ℎ = 108 ±

5 Å2 for 4FS(EO)2, which is in good agreement with literature results, obtained in a similar 

fashion for fluorinated di-chain surfactant with comparable structures:  𝐴ℎ = 128 ± 5 Å2 

for 8FS(EO)2,7 and 𝐴ℎ = 115 ± 5 Å2 for di-HCF4, di-HCF6 and di-CF4.29 On the other hand, 

for normal hydrocarbon AOT-stabilized microemulsions in a range of alkane solvents30, a 
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mean value of 72 Å2 has been reported for 𝐴ℎ . The smaller 𝐴ℎ value of hydrocarbon 

(H-carbon) surfactants at w/o interface suggests a higher packing density compared with the 

fluorocarbon (F-carbon) surfactants at w/c interface, which can be rationalized as an 

enhanced packing efficiency of F-carbon chains at the w/c interface40,41. 

3.4 Effect of CO2 bulk density: Variation of pressure, and hence density of scCO2, has also 

been investigated with the systems discussed above. On reducing bulk density, it might be 

expected that a more distinguished spherical core-shell structure would be obtained as a 

result of increasing shell-bulk contrast with lower bulk SLD of CO2: however, the results show 

quite the opposite. As presented in Figure 4, for a 6FS(EO)2 stabilized w/c microemulsion at 

W15, the definition of the primary and secondary peak diminished as density was reduced 

from approximately 0.9 to 0.7 g cm-3; this can be interpreted in terms of increasing 

polydispersity of the microemulsion droplets (data fitting gives σ/Rav~0.32). As the CO2 

density was further decreased down to ~0.68 g cm-3 (at 120 bar), the scattering profile is no 

longer consistent with the spherical core-shell model as previously. Instead, the results can 

be fitted to a cylindrical model (Figure 5), suggesting that the spherical microemulsion 

droplets have transformed to elongated structures as a result of reduction in bulk CO2 

density. The effect of pressure on SANS was also examined for a pure D2O core system and 

similar results were obtained as for the H2O/D2O mixed core systems. 

On the other hand, 4FS(EO)2 stabilized microemulsions have shown similar behavior at 

reduced bulk density: at first, no scattering was obtained from the mixture at CO2 densities 

below 0.68 g cm-3 and the phase appeared turbid. With increasing pressure, a phase 

transition was observed at ρCO2 ~0.71 g cm-3 (at 130 bar), and similar to 6FS(EO)2 systems, 
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scattering characteristics of anisotropic structures obtained at various W values. It should be 

noted again that all the SANS data were obtained from w/c microemulsions in transparent 

single phase regions (visual inspection). 

Furthermore, although formation of elongated w/c microemulsions has been reported in a 

few studies 14-16, this is the first observation of anisotropic micellar structures triggered by 

changing CO2 pressure and bulk density. In Table 3, the fitting parameters obtained using the 

cylindrical form factor model have been compared for w/c systems stabilized by 4FS(EO)2 

and 6FS(EO)2, together with other systems containing cylindrical micelles reported in the 

literature11, 15. Although the aspect ratio between the length and the cross section diameter 

is significant for the w/c microemulsions, the length appears to be significantly smaller 

compared with previous observations with different surfactants.  

Figure 4. Scattering profiles for 6FS(EO)2 

stabilized w/c microemulsions at W15, 45˚C; 

P=130bar and 360 bar(dCO2=0.71 and 0.91 g 

cm-3 respectively). 

   

 

Change to read angstrom -1  
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Figure 5. Scattering profiles of w/c 

microemulsions at different water contents 

between W10 and W20 at low CO2 densities 

(T=45 ˚C, dCO2=0.68 g cm-3 and P=120 bar for 

6FS(EO)2, P=130 bar and dCO2=0.71 g cm-3  for 

4FS(EO)2). The profiles have been fitted to a 

core-shell cylinder form factor model. It should be noted that, the data/fit for the 4FS(EO)2 

W15 system has been multiplied by a factor of 4 for clarity of presentation. Also shown in 

the inset, the scattering profile for a pure D2O core microemulsion stabilized by 6FS(EO)2 

under the same experimental conditions. 
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Surfactants W dCO2 /(g cm-3) Length (L) /Å Radius (R)/Å Thickness /Å L /2R 

6FS(EO)2 15 0.68 50 ±2 3 ±1 6 10 

20 0.68 77 (±3) [78 

±3] 

3 (±1) [4] 6 [5] 13 [19] 

4FS(EO)2 10 0.71 63±2 3±1 5 10 

15 0.71 71±5 3±1 6 11 

TC14+C2Benz 

(9:1 ratio)a 

10 0.91 140±2 17±1 N/A 4 

20 0.91 160±2 23±1 N/A 3.5 

TC14+C4Benz 

(9:1 ratio)a 

10 0.91 77±2 15±1 N/A 2.5 

20 0.91 294±2 29±1 N/A 5 

Co(di-HCF4)2
 b 10 1.00 261±5 11±2 9 7 

Ni(di-HCF4)2
 b 10 1.00 273±5 10±2 9 7 

Table 3. Fitting parameters obtained from the core-shell cylindrical model for w/c 

microemulsions under reduced CO2 density. Values in square brackets are for the D2O 

contrast only sample, data and fit shown in inset to Figure 5.   

*a ellipsoidal micelles obtained by James et al. (ref.11) using a CO2-philic hydrocarbon 

surfactant TC14 with different added hydrotropes. 

*b cylindrical w/c microemulsions obtained by Trickett et al. (ref.15) using a di-chain 

AOT-analogue fluorinated surfactant with transition metal cations. 
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3.5 Droplet polydispersity and film bending rigidity: Film rigidity, or bending energy, is a 

central parameter in one of the most widely accepted theories accounting for 

microemulsion stability29. In simple terms, it represents the energy required to deform the 

interfacial film stabilizing the droplets from a preferred curvature, and may be readily 

accessed through experiments to determine a composite term (2𝐾 + 𝐾) where K represents 

the bending energy (elasticity) and 𝐾̅ is a factor associated with Gaussian curvature 

accounting for film topology31. Safran32 and Milner33 suggested thermally excited interfacial 

fluctuations could be described in terms of spherical harmonics. This leads to the film 

rigidity being related to polydispersity of spherical droplets σ/Rav, and the entropy of mixing 

of the microemulsion droplets f(ϕ) (Equation 5). 

2𝐾 + 𝐾 =
𝑘𝐵𝑇

8𝜋(
𝜎

𝑅𝑎𝑣
)2

−
𝑘𝐵𝑇

4𝜋
𝑓(𝜙)    (5)  

As discussed in earlier sections, the polydispersities have been determined for series of 

spherical droplet w/c microemulsions by analyzing the core-shell scattering profiles, and 

based on Equation 5, the film rigidity of these systems can be estimated. (Note, this model 

has not been applied to the cylindrical microemulsions, such as shown in Figure 5, as 

equation 5 applies only to spherical systems). 

The resulting bending rigidities of 6FS(EO)2 and 4FS(EO)2 films in w/c microemulsions at dCO2 

~0.91 g cm-3 have been plotted against W and compared in Figure 6. At first sight, there is 

little apparent correlation between the film rigidity and water content, however, the results 

also show that the film rigidities with a longer chain surfactants are generally higher, as on 

average, 2𝐾 + 𝐾̅ =  1.7 𝑘𝐵𝑇 for 6FS(EO)2, and 1.2 𝑘𝐵𝑇 for 4FS(EO)2. In previous studies 

by Klostermann et al34,35, the film bending rigidity was also determined for bi-continuous 
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w/c microemulsions using SANS and NSE (Neutron Spin Echo), and owing to the different 

topology of bi-continuous microemulsions, a different methodology was used, representing 

a so called ‘bare bending rigidity’ 𝜅0~0.9𝑘𝐵𝑇 for two different polydisperse polymeric 

F-carbon surfactant films34,35. Comparing with the 4- and 6FS(EO)2
 stabilized systems, this 

value appears to be lower, which is possibly owing to the significantly reduced contribution 

from 𝐾̅ for the saddle-shaped curvature in bi-continuous microemulsions. 

On the other hand, a number of studies on hydrocarbon-based w/o microemulsions 

stabilized by H-carbon surfactants36,37,38 have shown that the film bending rigidity scales 

with the carbon number (C) in the surfactant tails as 2𝐾 + 𝐾̅~𝐶2.3. In this current study, 

albeit with only two different chain lengths, a similar correlation has been obtained, 

however, with a reduced exponent ~1.2 (C4FS(EO)2=12 and C6FS(EO)2=16). If only CF2 was 

considered as the ‘effective unit’ in the tail, the power would be further reduced to 0.9 

(C4FS(EO)2=8 and C6FS(EO)2=12). Hence, compared with w/o microemulsions, the film bending 

rigidity in w/c microemulsions seems to be less dependent on surfactant tail carbon number. 

It should be noted that, the bending rigidity of 6FS(EO)2 and 4FS(EO)2 films in w/c 

microemulsions also appears to be higher compared with an H-carbon di-chain surfactant 

film with comparable a chain length: for example, with water/di-Cn-PC/n-hexanol/iso-octane 

microemulsions39, a similar film bending rigidity ~1.7 𝑘𝐵𝑇 was obtained but for a total 

carbon number C=24. Speculatively, the reasons for difference in 2𝐾 + 𝐾̅ between F-carbon 

(w/c) and H-carbon (w/o) surfactants could be: 1. Enhanced elastic moduli K for F-carbon 

chains owing to higher steric crowding of CF2 units; 2. As suggested by Rossky et al.40, 41, the 

steric density and unfavorable electrostatic interactions in F-carbon films also result in less 
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penetration of both water and CO2 molecules through the interface compared with 

H-carbon analogue w/o systems, which is expected to dampen the fluctuations of the 

surfactant films: hence, the film bending rigidity increases. 3. With the additional factors 

mentioned above, surfactant chain length becomes a less dominant factor for the film 

bending rigidity for water/F-carbon surfactant/scCO2 microemulsions, as revealed by the 

scaling 2𝐾 + 𝐾̅~𝐶1.5 obtained from this study rather than an exponent of 2.3 found for w/o 

systems36-39. 

 

Figure 6. Film bending rigidity in units of kBT for w/c microemulsions stabilized by 6FS(EO)2 

(black dots) and 4FS(EO)2 (white squares) at various W ratios, 350 bar and 45 ˚C. It should 

be noted that the data point for the 6FS(EO)2 system at W10 was taken from a repeat 

experiment and the result is more consistent with the others, as suggested in previous 

sections. The film bending rigidity for the W15, 6FS(EO)2 at lower pressure (130 bar) is also 

plotted (circled white triangle), a significant reduction can be seen comparing with the 

high pressure systems. 
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Furthermore, as CO2 density was reduced towards 0.71 g cm-3 at pressure P=130 bar, the film 

rigidity has been found to drop significantly to 0.83 kBT(circled data point in Figure 6), and in 

the studies by Klostermann et al.33, a similar trend was also obtained. With further reduction 

in CO2 density, the surfactant film rigidity could no longer be obtained for the cylindrical 

microemulsion droplets using Equation 5, since the correlation is only valid for spherical 

particles. However, by considering the effect of CO2 bulk density on the film bending energy 

as mentioned earlier, it can be deduced that the surfactant film becomes increasingly 

flexible as the CO2 density drops, and the elongated structures may also be attributed to this 

effect. 
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4. Conclusions 

A method has been successfully developed to highlight core-shell structures in water-in-CO2 

microemulsions using contrast variation High Pressure SANS, and the following important 

features have been revealed: 

1. By studying the size polydispersity of w/c microemulsion droplets, film bending 

energies have been determined for fluorinated surfactants with two different chain 

lengths. Comparing to the results from w/o microemulsions stabilized by di-chain 

H-carbon surfactants36-39, and bicontinuous w/c microemulsions34,35 stabilized by 

polydisperse polymeric F-carbon surfactants, the 4- and 6FS(EO)2 surfactant films 

appear to have higher bending energies, and 2𝐾 + 𝐾̅ =  1.2 ~1.7𝑘𝐵𝑇. The film 

rigidity was also found to scale with surfactant chain carbon number as: 2𝐾 +

𝐾̅ ~ 𝐶1.2, the exponent in this correlation (1.2) is lower than that obtained from 

H-carbon surfactants in w/o systems(~2.5) 36 - 39. 

2. As the CO2 bulk density is reduced towards the phase instability boundary, the 

spherical microemulsion droplets were found to elongate and the SANS could be 

described in terms of cylindrical aggregates. This is the first observation of 

pressure/density driven shape transitions for w/c microemulsions. Although these 

cylindrical structures are not sufficiently anisotropic to drive significant viscosity 

enhancements, this is a very interesting observation which deserves further 

attention. Instead of changing the chemical compositions in the surfactant film by 

using designed surface-active additives18, hydrotropes16 or chemical methods such as 

ion exchange in the headgroups17, the bulk density of scCO2 could represent a 
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convenient way to induce shape transitions, which has the potential to open up new 

applications of CO2 as a solvent and processing medium.  
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