514 research outputs found

    Monitoring and control technologies for bioregenerative life support systems/CELSS

    Get PDF
    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS

    The War on Drugs

    Get PDF
    America is in an epic battle, not against a foreign country but to keep you and every other citizen from putting a certain list of chemicals in your body. Since President Nixon, this battle has been labeled The War on Drugs . This battle is extremely expensive: total cost to local, state and federal government equals 19.2billionayear.Inacountryofapproximately300millionthatequatesto19.2 billion a year. In a country of approximately 300 million that equates to 64 per person (Elsner, p. 22). All of these resources are used in an effort to keep people from getting high. What do Americans get for 64 dollars a year; they get 4,348 [drug related] arrests a day, or one every 20 seconds (Elsner, 2006, p. 20). All these arrests contribute to America\u27s enormous inmate population of over 2 million (p. 13). For each of those inmates, the government spends $34,000 a year to have the honor of keeping them as wards of the state (p. 16). Like all wars, the War on Drugs is obsessed with catching the ring leader, or big fish. This obsession has had international and domestic reproductions. The Drug Enforcement Administration (DEA) when first formed, operated all mostly entirely domestic. It now maintains agents in over 40 countries (Cooper, 95). Back home, police agencies seize billions of dollars in illegal private assets, and in most cases pocket the profit. The largest impact from the War on Drugs is by far the isolation and classification of minorities as second-class citizens. African Americans now account for 40 percent of the prison population while only 12 percent of the United States (US) population (Elsner, 2006, p. 13)

    Administrative Practice Before Federal Agencies

    Get PDF
    There exist more than forty federal executive and administrative agencies before which lawyers (and in many cases, laymen) may practice and serve the interests of clients. The complexities of our society, the specializations which are a by-product of a complex industrial state, and the persistent growth of government\u27s bureaucracy, point up the continuing importance of practice before federal administrative agencies

    Non-Newtonian gravity or gravity anomalies?

    Get PDF
    Geophysical measurements of G differ from laboratory values, indicating that gravity may be non-Newtonian. A spherical harmonic formulation is presented for the variation of (Newtonian) gravity inside the Earth. Using the GEM-10B Earth Gravitational Field Model, it is shown that long-wavelength gravity anomalies, if not corrected, may masquerade as non-Newtonian gravity by providing significant influences on experimental observation of delta g/delta r and G. An apparent contradiction in other studies is also resolved: i.e., local densities appear in equations when average densities of layers seem to be called for

    How do oceanic plateaus form? Clues from drilling at Shatsky Rise

    Get PDF
    Oceanic plateaus are huge basaltic constructions whose eruptions may briefly outstrip even global mid-ocean ridge magma production. Although they form great undersea mountains, their origins are poorly understood. A widely accepted explanation is that oceanic plateaus are built by massive eruptions from the head of nascent thermal mantle plumes that rise from deep in the mantle to the surface [e.g., Duncan and Richards, 1991]. An alternative is that plateaus erupt by decompression melting of fusible patches in the upper mantle at plate edges or zones of extension [Foulger, 2007]

    IODP Expedition 324: Ocean Drilling at Shatsky Rise Gives Clues about Oceanic Plateau Formation

    Get PDF
    Integrated Ocean Drilling Program (IODP) Expedition 324 cored Shatsky Rise at five sites (U1346–U1350) to study processes of oceanic plateau formation and evolution. Site penetrations ranged from 191.8 m to 324.1 m with coring of 52.6 m to 172.7 m into igneous basement at four of the sites. Average recovery in basement was 38.7%–67.4%. Cored igneous sections consist mainly of variably evolved tholeiitic basalts emplaced as pillows or massive flows. Massive flows are thickest and make up the largest percentage of section on the largest and oldest volcano, late Jurassic age Tamu Massif; thus, it may have formed at high effusion rates. Such massive flows are characteristic of flood basalts, and similar flows were cored at Ontong Java Plateau. Indeed, the similarity of igneous sections at Site U1347 with that cored on Ontong Java Plateau implies similar volcanic styles for these two plateaus. On younger, smaller Shatsky Rise volcanoes, pillow flows are common and massive flows thinner and fewer, which might mean volcanism waned with time. Cored sediments from summit sites contain fossils and structures implying shallow water depths or emergence at the time of eruption and normal subsidence since. Summit sites also show pervasive alteration that could be due to high fluid fluxes. A thick section of volcaniclastics cored on Tamu Massif suggests that shallow, explosive submarine volcanism played a significant role in the geologic development of the plateau summit. Expedition 324 results imply that Shatsky Rise began with massive eruptions forming a huge volcano and that subsequent eruptions waned in intensity, forming volcanoes that are large, but which did not erupt with unusually high effusion rates. Similarities of cored sections on Tamu Massif with those of Ontong Java Plateau indicate that these oceanic plateaus formed in similar fashion

    Formation and evolution of Shatsky Rise oceanic plateau: Insights from IODP Expedition 324 and recent geophysical cruises

    Get PDF
    Recent research from the Shatsky Rise in the western Pacific Ocean provides new insights on the formation and evolution of this oceanic plateau as well as tests of mantle models to explain anomalous large igneous province (LIP) volcanism. Recent Shatsky Rise studies cored the igneous pile (Integrated Ocean Drilling Program Expedition 324), imaged the interior with seismic refraction and multichannel seismic reflection data, and mapped magnetic anomalies adjacent to the plateau to provide new constraints on its tectonic history. Coring data show that Tamu Massif, the largest edifice within Shatsky Rise, is characterized by massive sheet flows, similar to flows caused by voluminous eruptions in continental flood basalts. Core data also indicate that the massive eruptions waned as the plateau evolved and smaller edifices were built. Seismic data show intrabasement reflectors within Tamu Massif that indicate volcanism from its center, indicating that this is an enormous shield volcano with abnormally low flank slopes and thick crust (~ 30 km). Paleomagnetic data record minimal geomagnetic field variations, consistent with the inference of massive, rapid volcanism. Altogether, the physical picture indicates that Shatsky Rise was built by massive, rapid eruptions that formed enormous volcanoes. Geochronologic data support the previously inferred age progression, with the volcanic massifs formed along the trace of a triple junction starting from Tamu Massif and becoming progressively younger to the northeast. These data weaken support for rapid emplacement because they show that the last eruptions atop Tamu Massif encompassed several million years between the final massive flows as well as a long hiatus of ~ 15 Myr until late stage eruptions that formed a summit ridge. They may also indicate that the last eruptions on Tamu and Ori massifs occurred while the triple junction was hundreds of kilometers distant. Furthermore, magnetic anomaly data indicate that the plate boundary reorganization associated with Shatsky Rise formation occurred several million years prior to the first Tamu Massif eruptions, suggesting plate boundary control of Shatsky Rise initiation. Geochemical and isotopic data show that Shatsky Rise rocks are variably enriched, with the majority of lavas being similar to mid-ocean ridge basalts (MORB). However, the data indicate deeper (> 30 km) and higher partial degree of melting (15–23%) as compared with normal MORB. Melting models indicate that the magma experienced a mantle temperature anomaly, albeit only a small one (~ 50 °C). Some lava compositions suggest the involvement of recycled subducted slab material. Recent investigations of Shatsky Rise initially envisaged a competition between two end-member models: the thermal plume head and the fertile mantle melting beneath plate extension (aka, plate model). Both hypotheses find support from new data and interpretations, but both do not fit some data. As a result, neither model can be supported without reservation. Noting that most basaltic oceanic plateaus have formed at triple junctions or divergent plate boundaries, we suggest that this dichotomy is artificial. Oceanic plateau volcanism is anomalous and focused at spreading ridges for reasons that are still poorly understood, mainly owing to uncertainties about mantle convection and geochemical reservoirs. Shatsky Rise investigations have vastly improved our understanding of the formation of this oceanic plateau, but highlight that important work remains to understand the underlying nature of this volcanism

    Nature of the Jurassic Magnetic Quiet Zone

    Get PDF
    Author Posting. © American Geophysical Union, 2015. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 42 (2015): 8367–8372, doi:10.1002/2015GL065394.The nature of the Jurassic Quiet Zone (JQZ), a region of low-amplitude oceanic magnetic anomalies, has been a long-standing debate with implications for the history and behavior of the Earth's geomagnetic field and plate tectonics. To understand the origin of the JQZ, we studied high-resolution sea surface magnetic anomalies from the Hawaiian magnetic lineations and correlated them with the Japanese magnetic lineations. The comparison shows the following: (i) excellent correlation of anomaly shapes from M29 to M42; (ii) remarkable similarity of anomaly amplitude envelope, which decreases back in time from M19 to M38, with a minimum at M41, then increases back in time from M42; and (iii) refined locations of pre-M25 lineations in the Hawaiian lineation set. Based on these correlations, our study presents evidence of regionally and possibly globally coherent pre-M29 magnetic anomalies in the JQZ and a robust extension of Hawaiian isochrons back to M42 in the Pacific crust.National Science Foundation Grant Numbers: OCE-1029965, OCE-1233000, OCE-10295732016-04-2

    A new middle to late Jurassic Geomagnetic Polarity Time Scale (GPTS) from a multiscale marine magnetic anomaly survey of the Pacific Jurassic Quiet Zone

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(3), (2021): e2020JB021136, https://doi.org/10.1029/2020JB021136.The Geomagnetic Polarity Time Scale (GPTS) provides a basis for the geological timescale, quantifies geomagnetic field behavior, and gives a time framework for geologic studies. We build a revised Middle to Late Jurassic GPTS by using a new multiscale magnetic profile, combining sea surface, midwater, and autonomous underwater vehicle near-bottom magnetic anomaly data from the Hawaiian lineation set in the Pacific Jurassic Quiet Zone (JQZ). We correlate the new profile with a previously published contemporaneous magnetic sequence from the Japanese lineation set. We then establish geomagnetic polarity block models as a basis for our interpretation of the origin and nature of JQZ magnetic anomalies and a GPTS. A significant level of coherency between short-wavelength anomalies for both the Japanese and Hawaiian lineation magnetic anomaly sequences suggests the existence of a regionally coherent field during this period of rapid geomagnetic reversals. Our study implies the rapid onset of the Mesozoic Dipole Low from M42 through M39 and then a subsequent gradual recovery in field strength into the Cenozoic. The new GPTS, together with the Japanese sequence, extends the magnetic reversal history from M29 back in time to M44. We identify a zone of varying, difficult-to-correlate anomalies termed the Hawaiian Disturbed Zone, which is similar to the zone of low amplitude, difficult-to-correlate anomalies in the Japanese sequence termed the Low Amplitude Zone (LAZ). We suggest that the LAZ, bounded by M39–M41 isochrons, may in fact represent the core of what is more commonly known as the JQZ crust.This study is funded by National Science Foundation grants OCE-1029965 (Tominaga, Tivey, and Lizarralde) and OCE-1233000 (Tominaga and Tivey) and OCE-1029573 (Sager).2021-07-2
    • …
    corecore