6,609 research outputs found

    Robust computer-aided synthesis and optimization of linear multivariable control systems with varying plant dynamics via AUTOCON

    Get PDF
    AUTOCON is an automated computer-aided design tool for the synthesis and optimization of linear multivariable control systems based upon user-defined control parameter optimization. Violations in stability and performance requirements are computed from constraints on Single Input/Single Output (SISO) open- and closed-loop transfer function frequency responses, and from constraints on the singular-value frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for all critical plant variations. Optimum nonlinear programming algorithms are used in the search for local constrained solutions in which violations in stability and performance are caused either to vanish or be minimized for a proper selection of the control parameters. Classical control system stability and performance design can, in this way, be combined with modern multivariable robustness methods to offer general frequency response loop-shaping via a computer-aided design tool. Complete Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots are produced, including user-defined boundary responses. AUTOCON is used to synthesize and optimize the lateral/directional flight control system for a typical high-performance aircraft

    Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain

    Full text link
    The interaction of coherent magnetization rotation with a system of two-level impurities is studied. Two different, but not contradictory mechanisms, the `slow-relaxing ion' and the `fast-relaxing ion' are utilized to derive a system of integro-differential equations for the magnetization. In the case that the impurity relaxation rate is much greater than the magnetization precession frequency, these equations can be written in the form of the Landau-Lifshitz equation with damping. Thus the damping parameter can be directly calculated from these microscopic impurity relaxation processes

    Adsorption and two-body recombination of atomic hydrogen on 3^3He-4^4He mixture films

    Full text link
    We present the first systematic measurement of the binding energy EaE_a of hydrogen atoms to the surface of saturated 3^3He-4^4He mixture films. EaE_a is found to decrease almost linearly from 1.14(1) K down to 0.39(1) K, when the population of the ground surface state of 3^3He grows from zero to 6×10146\times10^{14} cm−2^{-2}, yielding the value 1.2(1)×10−151.2(1)\times 10^{-15} K cm2^2 for the mean-field parameter of H-3^3He interaction in 2D. The experiments were carried out with overall 3^3He concentrations ranging from 0.1 ppm to 5 % as well as with commercial and isotopically purified 4^4He at temperatures 70...400 mK. Measuring by ESR the rate constants KaaK_{aa} and KabK_{ab} for second-order recombination of hydrogen atoms in hyperfine states aa and bb we find the ratio Kab/KaaK_{ab}/K_{aa} to be independent of the 3^3He content and to grow with temperature.Comment: 4 pages, 4 figures, all zipped in a sigle file. Submitted to Phys. Rev. Let

    Measurements of the composition of aerosol component of Venusian atmosphere with Vega 1 lander, preliminary data

    Get PDF
    Preliminary investigation of mass spectra of gaseous products of pyrolyzed Venusian cloud particles collected and analyzed by the complex device of mass-spectrometer and collector pyrolyzer on board Vega 1 lander revealed the presence of heavy particles in the upper cloud layer. Based on 64 amu peak (SO2+), an estimate of the lower limit of the sulfuric acid aerosol content at the 62 to 54 km heights of approximately 2.0 mg/cu m is obtained. A chlorine line (35 and 37 amu) is also present in the mass spectrum with a lower limit of the chlorine concentration of approximately 0.3 mg/ cu m

    Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium

    Full text link
    The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction of surface and volume excitations of liquid helium, which rapidly decreases with temperature. Thus, the temperature dependence of the low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V s), where n_e is the surface electron density. The relation T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and \omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur

    Atomic Deuterium Adsorbed on the Surface of Liquid Helium

    Get PDF
    We investigate deuterium atoms adsorbed on the surface of liquid helium in equilibrium with a vapor of atoms of the same species. These atoms are studied by a sensitive optical method based on spectroscopy at a wavelength of 122 nm, exciting the 1S-2P transition. We present a direct measurement of the adsorption energy of deuterium atoms on helium and show evidence for the existence of resonantly enhanced recombination of atoms residing on the surface to molecules.Comment: 6 pages 4 figure

    Higher order effective low-energy theories

    Full text link
    Three well-known perturbative approaches to deriving low-energy effective theories, the degenerate Brillouin-Wigner perturbation theory (projection method), the canonical transformation, and the resolvent methods are compared. We use the Hubbard model as an example to show how, to fourth order in hopping t, all methods lead to the same effective theory, namely the t-J model with ring exchange and various correlated hoppings. We emphasize subtle technical difficulties that make such a derivation less trivial to carry out for orders higher than second. We also show that in higher orders, different approaches can lead to seemingly different forms for the low-energy Hamiltonian. All of these forms are equivalent since they are connected by an additional unitary transformation whose generator is given explicitly. The importance of transforming the operators is emphasized and the equivalence of their transformed structure within the different approaches is also demonstrated.Comment: 14 pages, no figure

    Fermi-liquid behaviour of the low-density 2D hole gas in GaAs/AlGaAs heterostructure at large values of r_s

    Full text link
    We examine the validity of the Fermi-liquid description of the dilute 2D hole gas in the crossover from 'metallic'-to-'insulating' behaviour of R(T).It has been established that, at r_s as large as 29, negative magnetoresistance does exist and is well described by weak localisation. The dephasing time extracted from the magnetoresistance is dominated by the T^2 -term due to Landau scattering in the clean limit. The effect of hole-hole interactions, however, is suppressed when compared with the theory for small r_s.Comment: 4 pages ReVTeX, 4 ps figure

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)∼Ed−1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de
    • …
    corecore