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INTRODUCTION 

AUTOCON is an automated computer-aided design tool for the synthesis and 
optimization of linear multivariable control systems based upon user-defined control 
parameter optimization. Violations in stability and performance requirements are 
computed from constraints on Single Input/Single Output (SISO) open- and closed-loop 
transfer function frequency responses, and from constraints on the singular-value 
frequency responses of Multiple Input/Multiple Output (MIMO) transfer functions, for 
all critical plant variations, Optimum nonlinear programming algorithms are used in 
the search for local constrained solutions in which violations in stability and per- 
formance are caused either to vanish or be minimized for a proper selection of the 
control parameters. Classical control system stability and performance design can, 
in this way, be combined with modern multivariable robustness methods to offer gen- 
eral frequency response loop-shaping via a computer-aided design tool. Complete 
Nichols, Nyquist, Bode, singular-value Bode magnitude and transient response plots 
are produced, including user-defined boundary responses, AUTOCON is used to synthe- 
size and optimize the lateral/directional flight control system for a typical high- 
performance aircraft, (See figure 1.) 

Automated Computer-Aided Workbench Design Tool For Synthesis And 
Optimization Of Linear Multivariable Control Systems 

- Parameter Optimization Determines Local Constrained Optimal 
Solutions In Which Violations In User-Specified Stability/Performance 
Requirements Either Vanish Or Are Minimized 

- Frequency-Domain Loop Shaping Via Nonlinear Mathematical Programming 

- Synthesis/Optimization Considers Each Stability Loop And Constrained 
Transfer Function For All Plant Variations Simultaneously. 

- User-Defined Control System Architecture, Parameters, Stability Loops, 
Constrained Transfer Functions 

- Fixed and Varying Plant Dynamics 

- Classical Specs : Stability Margins, Bandwidth, Damping, Overshoot, etc. 

- Sensitivity Analysis 

Figure 1 
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CLASSICAL CONTROL SYSTEM SYNTHESIS AND OPTIMIZATION 

Perlormance 

The "classical" version of AUTOCON (ref. 1) performs synthesis and 
optimization of linear control systems using nonlinear mathematical programming 
(NMP). Stability constraints (stability margins using Nyquist single-loop-at-a-time 
methods) and system performance constraints for scalar transfer functions are user- 
specified as are the system architecture and control parameters. Actual system 
open- and closed-loop frequency responses (airframe plus control system) are comput- 
ed for the user-specified "initial system" for each stability-loop and constrained 
closed-loop transfer function, and for all selected plant variations. Similarly, 
desired and boundary responses are computed from the system requirements. 
Violations in the actual responses when compared with the desired and boundary 
responses at each frequency computed (considering all responses simultaneously) are 
caused either to vanish or are minimized by a proper selection (automated) of the 
control parameters (parameter optimization). A multivariable control system diagram 
and stability/performance constraints are depicted in figure 2 below. 

CL Bode Response Boundary 
Envelopes (Each Constrained 
CLFR. All a/s) 

C L T F : ~  I J- 4 d c c  
-- Q . N , , u ,  P . 1) Analytical Third-Order (or 

STICK ' ROLLSTK ' Reduced) Model 
2 )  Table of Values N y , B . R  

RPEDAL (Mag, Phase v9 u) 

I .  
. .  
. I  :.....,........... .........., \...............* ...................... 

Controller Sensors Plant 

= A(k)x + B(k)u 
y = H(k)X + F(k)U 

I Stability MargindForbdden Region 
(Each Loop, All PVs) Stability I I 

Figure 2 
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OBJECTIVE FUNCTION (CLASSICAL VERSION) 

The objective function for the classical version of the program, shown in 
figure 3 ,  combines violations in stability (open-loop frequency responses (OLFR)) 
for each stability loop with violations in the magnitude/phase frequency responses 

i of selected closed-loop scalar transfer functions, for all plant variations. 
Classical gain and phase margins (GM, PM) are used to define a Forbidden Region in 
the Nyquist/Nichols plane. This region is an area of uncertainty centered at 
the Nyquist critical point (-1, j 0 )  or (Odb, -180") which the OLFR must avoid for 
adequate single input/single output (SISO) stability behavior. User-specified 
boundary constraints are imposed on the magnitude/phase closed-loop frequency 
responses (CLFR) which the actual CLFRs must be within to provide desirable perform- 
ance. 

= C C C f(Stabi1ity MargindForbidden Region Violations) 

= C C C f(Magnitude/Phase Boundary Constraint Violations) 

J(P)S,ab PVS OLTFs w 

J (P)P,d PVs CLTFs w 

Figure 3 
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THE SEARCH ALGORITHM (NONLINEAR MATHEMATICAL PROGRAMMING) 

A constrained local minimization procedure (Search Algorithm) is used to 
search for the active control parameters yielding minimum violation in all require- 
ments considered collectively. The variable metric method of Davidson, Fletcher, 
and Powell (DFP Algorithm) (refs. 2 , 3 )  iteratively computes an approximation of  
the inverse Hessian matrix, H, which is used to deflect the gradient vector, 
VJ(p) = aJ/ap = AJ/Ap, at a point in parameter hyperspace. The computation of 
this deflection matrix,q, (q(pi) = H- (PI)) hastens convergence since it is very 
effective in the vicinity of valleys in the hyperspace, The algorithm is also quite 
fast and not storage intensive since second partials need not be computed, nor must 
previous first or second derivatives be stored. The gradient is computed by a 
numerical perturbation procedure. A unidimensional search with quadratic interpola- 
tion is performed in the deflected gradient direction (search direction) to obtain 
the minimum in this direction. A gradient projection scheme is used to constrain 
the search within the feasible region. This is repeated for each search direction 
until the minimum is located. The iterative search algorithm is shown by the 
recursive equations and pictorially in figure 4 .  

0 Constrained Local Minimization 

- DFP Algorithm 

- Unidimensional Search With Quadratic Interpolation 

- Gradient Projection 

p"' = p' - X'v' GJ(p'), P2 

Pmm < P ,< Pmax 

A * '  = J(p' - Xv' VJ(p')),,, 

Figure 4 

625 



MIMO TRANSFER FUNCTION MATRICES DEFINITION 

Shown below in figure 5 is a block diagram of a linear multivariable control 
system, subdivided into a controller, sensors and a plant. The representation here 
is of a plant with varying and uncertain plant dynamics given by the system matrices 
Ap(k), Bp(k), Hp(k) and Fp(k). The control system (controller and sensors) shown 
in Laplace transform notation can be combined with the plant state and output 
equations to form a total system state-space representation. It is convenient for 
multivariable systems to define certain matrix transfer functions. The loop trans- 
fer matrix, which depends upon the output node since matrix multiplication is not 
commutative, sensitivity matrix and complementary sensitivity matrix are defined in 
figure 5 (refs. 4 , 5 ) .  

........................... 
b b 
b . .................... 

I \ 
: Disturbances : 

............................. .................. 
Controller Sensors Plant 

= A(k)x + B(k)u P(k) = H(k) (IS - A(k)j’  B’+ F(k) 
88-CSR-026-007 y = H(k)x + F(k)u 

Loop Transfer Matrix L(s) = L (o,p) h= P(s) G(s) H(s) S(s) at y node 

fi G(s) H(s) S(s) P(s) at u node 

Sensitivity Matrix S (s) 2 ( I  + L (s)jl 

Complementary Sensitivity Matrix T (s) I - S (s) = L (s) (I + L (s)rl 

Figure 5 



SINGULAR-VALUES DEFINITION 

Nyquist stability theory, well founded and accepted for SISO systems, has 
been shown to be inadequate to describe robust MIMO system stability, because the 
determinant of the return difference matrix (I + L(s)) does not always provide a 
good indication of the proximity to singularity. Singular-values of a matrix A ,  
oi(A), however, provide a far better indication of system robustness since they 
provide a useful measure of the "size" of a matrix. Singular-values can be inter- 
preted as the "gains" of a matrix for input vectors in various directions, as shown 
in figure 6 below. They also provide a natural extension to the familiar Bode 
frequency plots via the Bode sigma plot (Singular-values vs frequency), The singu- 
lar-values of a matrix are defined as the nonnegative square roots of the 
eigenvalues Xi(AHA), where AH is the complex conjugate transpose of A. It is 
useful to define the maximum and minimum singular-values, ;(A) and g(A), respec- 
tively. These will then form an upper and lower bound for oi(A) on the Bode-sigma 
plot * 

For Any Matrix A and Vector x 

H 
oi(A) !! + J h. (A I A) 

A - 
o(A) = max a.(A) I 

I 
A o(pS = min o.(A) I 

i - 

= max gain of A 

= min gain of A 

Figure 6 
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OBJECTIVE FUNCTION (MODERN ROBUSTNESS VERSION) 

The objective function for the "modern" version of AUTOCON combines the VIM0 
robustness violation function Jrobustness with the "classical" version consisting of 
SISO stability and performance violation functions. The J(p),,bust term considers 
violations in the user-defined singular-value constraints for each constrained 
matrix transfer function and for all plant variations. This is shown in figure 7 
both with equations and graphically. 

= C C C f(Stability Margins/Forbidden Region Violations) 
J(p)Stab PVs OLTFs w 

= C C C f(Magnitude/Phnse Boundary Constraint Violations) 
J(P),crf PVs CLTFs w 

= C C C f(Singular-Value Constraint Violations) 
' J(P)Robust PVs TFMs LJ 

UI 

'FOLFR 

dJ 

0 
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TYPICAL SINGULAR-VALUE BODE PLOTS AND SPECIFICATIONS 

Typical singular-value frequency response (Bode) plots and constraints for a 
multivariable feedback control system are shown below in figure 8. The maximum 
singular-value plot of the sensitivity matrix E ( S )  is constrained for disturbance 
attenuation and bandwidth in figure 8a, whereas, gain/phase margins (resonant peak) 
and unmodeled high frequency dynamics specifications are imposed on the maximum 
singular-value plot of the complementary sensitivity matrix Z(T) in figure 8b. 
Clearly, the singular-value frequency responses and specifications shown below are 
analogous to the usual SISO frequency responses and specifications. Connection 
between the resonant peaks MT and MS and classical gain/phase margins can be 
developed using the methods of references 6 and 7. 

s 5 ( I +  Lj l  

T 4 L ( / +  Lyl 

Bandwidth & Disturbance Attenuation% (S) 

Gain / Phase Margin & Unmodeled High Frequency Dynamics : 0 ( T )  

GM 2 
..:..max ........................ :.~.:.~. .............................. 

PM 2 . ._. 

Tmax 
M 

Frequency 

(b) Figure 8 
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AUTOCON DESIGN EXAMPLE 

A design problem is presented below in figure 9 in which program AUTOCON is 
asked to synthesize a typical aircraft lateral/directional flight control system in 
which control of roll rate, P, and lateral acceleration Ny using the roll-stick and 
rudder pedal is effected, subject to combined MIMO robustness constraints and 
classical SISO stability and performance constraints, for three different operating 
points or flight conditions (plant variations). The synthesis and optimization will 
involve each constrained open- and closed-loop scalar and matrix transfer function 
for all plant variations, simultaneously. It is necessary for both the modern 
robustness constraints and the classical constraints to be active: 1) to ensure that 
the individual stability loops remain stable (closed-loop eigenvalues do not migrate 
into the right-half plane) and 2) to provide desirable SISO frequency response loop- 
shaping (classical specifications). The active control parameters chosen for this 
example were K1, K2, . . . Kg. In this design, K1, K2, K4, and K5 are scheduled 
(different gain value for each plant variation), while K3, Kg, K7, Kg, Kg are 
nonscheduled (same value for each plant variation). This results in a total of 17 
active control parameters. 

A/F Dynamics (Plant) 2 3 - 6 4 

_I 

8 
9 u, 

RWLSTK 30 K,s+K2 1157.3 '3 115 

6, 
-- 0.048 + 1 

wm.r n compenulsn M l v l W  

V, 0.158rl - F B C o n p . n s l h  
5 States 
3 Plant Variations - 

4 p .  I' K3 I _  Y2 

NF 
Dynamic 

Controlled Outputs 

Yaw Rate (R) 
Lateral Acceleration (N ) 

Inputs (Surface Deflections) 

Roll Rate (P) u2 

Y2 

ROLLSTK ( &) 
RPEDAL ( 6r ) 

Ye 
Y ,  

m.csnuMQ1t I 
Active Control Parameters (1 7)  

K, , K,, K4, K, + Scheduled 
K,, K, , K7, &, K, + Nonscheduled 
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AUTOCON DESIGN EXAMPLE: SPECIFICATIONS 

The classical SISO and modern MIMO robustness specifications for the AUTOCON 
design example are presented below in figure 10. Both the roll and yaw loops are 
desired to have at least 8 db of gain margin and 55 degrees of phase margin and each 
open-loop frequency response should not penetrate the Forbidden Region defined by 
the stability margins. It is also desired that the P/ROLLSTK response be within the 
performance bounds of an analytical 2nd- order model with parameters given below, 

performance bounds of a set of table values approximating a 2nd-order system with 
parameters given below, with a steady-state value of 11 k 1.25 db. The robustness 

attenuation and a ' i (T) resonant peak less than or equal to 0.69 db (this provides 

I with a steady-state value of 34 2 0.4 db; and the Ny/RPEDAL response be within the 

I 
I specifications include at least a 2 rad/sec system bandwidth, maximum disturbance 

, 
I 

I at least 55 degrees phase margin and 8 db gain margin simultaneously in each loop). 

SlSO (Classical) 
Stability : Roll & Yaw Loops 

Performance: 

P/ROLLSTK - 2nd Order Model ( < = 0.8, 4.0 I 0, 56.0 rad/sec) 

N, /RPEDAL - Table Values ( 6  = 0.8, 2.5 I on 53.5 md/sec) 

Steady-State : 34 f 0.4 db 

Steady-State : 1 1 1.25 db 

MIMO (Robustness) 

S(S) 3 Bandwidth 2 2rad/sec 
Maximize Disturbance Attentuation 
Stability Margins 

MT ' O''' db => PM Simultaneously in each loop 
GM 2 8db 

Figure 10 
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AUTOCON DESIGN EXAMPLE: PARAMETER CONSTRAINTS AND RESULTS 

- 
Parameter K3 K6 K7 Ka Kg 

Initial Value 1 .o ~@ 1.0 

z::ez$pt$:e 0.636 1.541 0.490 0.213 1.558 

The admissible parameter range (linear inequality constraints) for the 
design problem is shown below in figure lla. It is observed that the range for the 
forward-loop compensator parameters (scheduled) was selected as .001 I p I 10.0, 
whereas the remaining feedback parameter range (nonscheduled) was selected as -10.0 
I p I 10.0. This was done to limit the forward-loop gains to positive values 
thereby preserving the sign convention, while allowing for possible feedback sign 
reversals from the nominal system shown in figure 9 .  

Parameter 

Initial Value 

z::ez$pt$:e 

The results of the search, shown in figure llb, indicate that a local mini- 
mum was found at a violation (J) of .0027. The effect of this violation is actually 
too small to be observed from the frequency responses presented in figures 12-15. 
The initial value chosen for all parameters was unity (no a priori information 
assumed). The final computer-generated scheduled and nonscheduled parameter values 
are also listed in figure llb. It took 3 . 8  min on an IBM 3090 mainframe computer to 
synthesize this solution. 

K3 K6 K7 Ka Kg 

1 .o ~@ 1.0 

0.636 1.541 0.490 0.213 1.558 

Active Parameter Constraints Pmin I P I  P- 

Results ( J  = .00271 CPU = 3.8 min (IBM 30901 
Scheduled Parameters 

Parameter I K1 I K2 I K4 I KS I 
PV 1 2 3  1 2 3 1 2 3 1 2 3  

Initial Value 1 .o *I .o 

Final Computer 
Generated Value 1.030 0.501 0.421 1.511 1.278 0.988 0.644 0.448 0.288 2.491 2.090 1.217 

I PV 1 1 1 2 1 3  1 1 1 2 1 3 1 1 1 2 1 3 1 1 1 2  1 3  
I I I I I I I I I I I I 

Initial Value I I I I I I I I I I 1.0 
I I I 1 I I I 1 I I I 

Nonscheduled Parameters 
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AUTOCON DESIGN EXAMPLE: SISO NICHOLS PLOTS 

The following pages contain the SISO and MIMO response plots of the 
airframe/control system with the unity initial control parameter values (before) and 
the system with the final computer-generated parameter values (after) for the three 
plant variations superimposed. The SISO open-loop frequency responses (Nichols 
plots) for the roll and yaw loops produced by AUTOCON are shown below in figure 12. 
The (8db, 5 5 " )  Forbidden Region (FR) is plotted as the closed broken contour 
(shaded). It is apparent from the initial roll loop responses in figure 12a that 
there is severe penetration into the FR for all three systems, violating the (8db, 
55")FR stability specification. As shown in figure 12c,d, SISO stability is ade- 
quate for the yaw loop. It is observed from figure 12b that AUTOCON has reshaped the 
roll loop Nichols responses around the FR by an adjustment of the active control 
parameters, the values of which are listed in Figure llb. 

A U T O C O N  

[KNCOCP FREUENX RESPCNY, NIDCLS R O T  
MIMO LATDIR FCS 3PVS 

(b) 
PHASE (DEG) 

Figure 12 
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AUTOCON DESIGN EXAMPLE: SISO PERFORMANCE BODE RESPONSES 

The SISO closed-loop Bode magnitude performance responses P/ROLLSTK and 
Ny/RPEDAL are presented below for the unity initial system in figure 13a,b and 
after the AUTOCON synthesis in figure 13c,d, respectively. The upper, lower and 
desired response boundary constraints consistent with the performance specifications 
given in figure 10 are shown as broken curves, with the unacceptable region shaded 
in figure 13. For this example, only the magnitude response was constrained. In 
general, magnitude phase response constraints can be imposed. It is observed 
that there are severe violations for the unity initial parameter system both with 
respect to the steady-state values, shaping (notice the unacceptable resonance in 
the P/ROLLSTK response for two of the three plant variations), and sluggish Ny/ 
RPEDAL responses. After the AUTOCON synthesis, the responses were forced into their 
respective boundaries, thereby satisfying the classical SISO specifications imposed 
on the system. 

A U T O C O N  
MlMO LATDIR FCS 3PVS 

c L E € m K P m Y m  

PlROLLSTK NYRPEDAL 

I I I I 

PlROLLSTK NY~RPEDAL 

-W.O 

4 . 0  

a . 0  

a . 0  I 
' ' ' ' 'tb ' io' 



AUTOCON DESIGN EXAMPLE: MIMO SINGULAR-VALUE BODE RESPONSES 

The singular-value sensitivity matrix and complementary sensitivity matrix 
Bode responses, a(S)  and a(T), respectively, for the system with the unity initial 
parameter values and final computer-generated values are shown below in figure 14 
for the three plant variations. Bandwidth, disturbance attenuation, gain/phase 
margin and unmodeled high-frequency roll-off specifications are drawn in figure 14 
as broken boundary constraints with the unacceptable region shaded on the re- 
sponse plots. The a ( S )  and a(T) for this example are computed by AUTOCON 
from the MIMO matrix closed-loop transfer functions (217, Z~~,)/VREF~,VREF~) 
and (Z3, Zq)/(VREF3, VREF4) respectively. It is observed after comparing the 
initial and final sets of plots that AUTOCON successfully located a solution which 
satisfied the MIMO robustness specifications for all three plant variations, as 
given in figure 10. Note particularly the significant improvement in the distur- 
bance attenuation for the Z(S)  responses and the resonant peak magnitude MT 
attenuation for the Z(T) responses. Satisfying the 0.69 db resonant peak magnitude 
constraint ensures at least 55 degrees phase margin in each loop even when the 
variations occur simultaneously in both l o o p s .  At least 8 db gain margin in each 
loop is also obtained by virtue of the equations shown in figure 8b. 

A U T O C O N  
MIMO LAT/DIR FCS 3PVS 

S I M - M W E  aDsEDiDop FRmLENcY - 

Figure 14 
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AUTOCON DESIGN EXAMPLE: TRANSIENT RESPONSES 

Finally, transient responses of the constrained outputs roll rate, P, and 
lateral acceleration, Ny, to unit step ROLLSTK and RPEDAL input commands, respec- 
tively, are produced and shown below in figure 15 before and after the AUTOCON 
synthesis and optimization, for the systems with the three plant variations. 
Comparing the initial and final system P responses (figure 15a,b) shows that the 
poor initial responses (improper steady-state value and ringing) has been corrected 
by the optimization process and now satisfies the specifications. The upper, lower 
and desired transient boundary responses (broken curves) were computed from the 
second-order model parameters (specification) given in figure 10 and superimposed on 
the system transient responses. The shaded area indicates undesirable response 
regions. Objective function violations are measured in AUTOCON in the frequency- 
domain and not in the time-domain (transfer functions provide for a better more 
general measure for this application since they are not input dependent). There- 
fore, there may be some minor differences when comparing the two domains with 
respect to excursions from the desired response region. Since sets of table values 
were used to define the Ny/RPEDAL performance boundary constraints (note the sharp 
break-points in the broken boundary curves in figure 13b,d) exact 2nd order parame- 
ter values are unknown, and therefore, overlay boundary responses are not provided 
for the Ny transient response. Notice, however, how well the sluggish initial 
system Ny responses (figure llc) were improved by the program (figure 15d). It 
is important to understand that all SISO "classical" and MIMO robustness specifica- 
tions and constraints imposed for this AUTOCON design problem were active simultane- 
ously in the search for an optimum solution and were satisfied by the final 
computer-generated values. The solution was obtained in only one computer run. 

A U T O C O N  
MMO LATDR FC5 PVS 

m I M T  m 

Figurz 15 
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CONCLUSION 

The automated computer-aided design tool, AUTOCON, used for the synthesis 
and optimization of linear control systems has been expanded to handle robust 
multivariable constraints in addition to the "classical" single-input/single-output 
stability and performance requirements. The synthesis and optimization can be 
performed on systems with fixed plant dynamics as well as those with varying 
dynamics. AUTOCON thereby enables the designer to combine classical SISO and modern 
MIMO control system stability/performance specifications within a highly flexible 
nonlinear programming design optimization environment. 

The classical version of AUTOCON was first reviewed, followed by an intro- 
duction of the new multivariable robustness version of the program. Basic multi- 
variable robustness concepts involving singular-values were discussed and an auto- 
mated computer design example using AUTOCON was presented. 
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