70 research outputs found
Microencapsulated islet allografts in diabetic NOD mice and nonhuman primates
OBJECTIVE: Our goal was to assess the efficacy of encapsulated allogeneic islets transplanted in diabetic NOD mice and streptozotocin (STZ)-diabetic nonhuman primates (NHPs).MATERIALS AND METHODS: Murine or NHP islets were microencapsulated and transplanted in non-immunosuppressed mice or NHPs given clinically-acceptable immunosuppressive regimens, respectively. Two NHPs were treated with autologous mesenchymal stem cells (MSCs) and peri-transplant oxygen therapy. Different transplant sites (intraperitoneal [i.p.], omental pouch, omental surface, and bursa omentalis) were tested in separate NHPs. Graft function was monitored by exogenous insulin requirements, fasting blood glucose levels, glucose tolerance tests, percent hemoglobin A1c (% HbA1c), and C-peptide levels. In vitro assessment of grafts included histology, immunohistochemistry, and viability staining; host immune responses were characterized by flow cytometry and cytokine/chemokine multiplex ELISAS.RESULTS: Microencapsulated islet allografts functioned long-term i.p. in diabetic NOD mice without immunosuppression, but for a relatively short time in immunosuppressed NHPs. In the NHPs, encapsulated allo-islets initially reduced hyperglycemia, decreased exogenous insulin requirements, elevated C-peptide levels, and lowered % HbA1c in plasma, but graft function diminished with time, regardless of transplant site. At necropsy, microcapsules were intact and non-fibrotic, but many islets exhibited volume loss, central necrosis and endogenous markers of hypoxia. Animals receiving supplemental oxygen and autologous MSCs showed improved graft function for a longer post-transplant period. In diabetic NHPs and mice, cell-free microcapsules did not elicit a fibrotic response.CONCLUSIONS: The evidence suggested that hypoxia was a major factor for damage to encapsulated islets in vivo. To achieve long-term function, new approaches must be developed to increase the oxygen supply to microencapsulated islets and/or identify donor insulin-secreting cells which can tolerate hypoxia.</p
The Use of Biomaterials in Islet Transplantation
Pancreatic islet transplantation is a therapeutic option to replace destroyed β cells in autoimmune diabetes. Islets are transplanted into the liver via the portal vein; however, inflammation, the required immunosuppression, and lack of vasculature decrease early islet viability and function. Therefore, the use of accessory therapy and biomaterials to protect islets and improve islet function has definite therapeutic potential. Here we review the application of niche accessory cells and factors, as well as the use of biomaterials as carriers or capsules, for pancreatic islet transplantation
Protective Immunity to Listeria Monocytogenes Infection Mediated by Recombinant Listeria innocua Harboring the VGC Locus
In this study we propose a novel bacterial vaccine strategy where non-pathogenic bacteria are complemented with traits desirable for the induction of protective immunity. To illustrate the proof of principle of this novel vaccination strategy, we use the model organism of intracellular immunity Listeria. We introduced a, low copy number BAC-plasmid harbouring the virulence gene cluster (vgc) of L. monocytogenes (Lm) into the non-pathogenic L. innocua (L.inn) strain and examined for its ability to induce protective cellular immunity. The resulting strain (L.inn::vgc) was attenuated for virulence in vivo and showed a strongly reduced host detrimental inflammatory response compared to Lm. Like Lm, L.inn::vgc induced the production of Type I Interferon's and protection was mediated by Listeria-specific CD8+ T cells. Rational vaccine design whereby avirulent strains are equipped with the capabilities to induce protection but lack detrimental inflammatory effects offer great promise towards future studies using non-pathogenic bacteria as vectors for vaccination
Listeria pathogenesis and molecular virulence determinants
The gram-positive bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Pregnant women, neonates, the elderly, and debilitated or immunocompromised patients in general are predominantly affected, although the disease can also develop in normal individuals. Clinical manifestations of invasive listeriosis are usually severe and include abortion, sepsis, and meningoencephalitis. Listeriosis can also manifest as a febrile gastroenteritis syndrome. In addition to humans, L. monocytogenes affects many vertebrate species, including birds. Listeria ivanovii, a second pathogenic species of the genus, is specific for ruminants. Our current view of the pathophysiology of listeriosis derives largely from studies with the mouse infection model. Pathogenic listeriae enter the host primarily through the intestine. The liver is thought to be their first target organ after intestinal translocation. In the liver, listeriae actively multiply until the infection is controlled by a cell-mediated immune response. This initial, subclinical step of listeriosis is thought to be common due to the frequent presence of pathogenic L. monocytogenes in food. In normal indivuals, the continual exposure to listerial antigens probably contributes to the maintenance of anti-Listeria memory T cells. However, in debilitated and immunocompromised patients, the unrestricted proliferation of listeriae in the liver may result in prolonged low-level bacteremia, leading to invasion of the preferred secondary target organs (the brain and the gravid uterus) and to overt clinical disease. L. monocytogenes and L. ivanovii are facultative intracellular parasites able to survive in macrophages and to invade a variety of normally nonphagocytic cells, such as epithelial cells, hepatocytes, and endothelial cells. In all these cell types, pathogenic listeriae go through an intracellular life cycle involving early escape from the phagocytic vacuole, rapid intracytoplasmic multiplication, bacterially induced actin-based motility, and direct spread to neighboring cells, in which they reinitiate the cycle. In this way, listeriae disseminate in host tissues sheltered from the humoral arm of the immune system. Over the last 15 years, a number of virulence factors involved in key steps of this intracellular life cycle have been identified. This review describes in detail the molecular determinants of Listeria virulence and their mechanism of action and summarizes the current knowledge on the pathophysiology of listeriosis and the cell biology and host cell responses to Listeria infection. This article provides an updated perspective of the development of our understanding of Listeria pathogenesis from the first molecular genetic analyses of virulence mechanisms reported in 1985 until the start of the genomic era of Listeria research
Recommended from our members
Reservoir management strategy for East Randolph Field, Randolph Township, Portage County, Ohio
The primary objective of the Reservoir Management Field Demonstration Program is to demonstrate that multidisciplinary reservoir management teams using appropriate software and methodologies with efforts scaled to the size of the resource are a cost-effective method for: Increasing current profitability of field operations; Forestalling abandonment of the reservoir; and Improving long-term economic recovery for the company. The primary objective of the Reservoir Management Demonstration Project with Belden and Blake Corporation is to develop a comprehensive reservoir management strategy to improve the operational economics and optimize oil production from East Randolph field, Randolph Township, Portage County, Ohio. This strategy identifies the viable improved recovery process options and defines related operational and facility requirements. In addition, strategies are addressed for field operation problems, such as paraffin buildup, hydraulic fracture stimulation, pumping system optimization, and production treatment requirements, with the goal of reducing operating costs and improving oil recovery
Microencapsulated islet allografts in diabetic NOD mice and nonhuman primates
OBJECTIVE: Our goal was to assess the efficacy of encapsulated allogeneic islets transplanted in diabetic NOD mice and streptozotocin (STZ)-diabetic nonhuman primates (NHPs). MATERIALS AND METHODS: Murine or NHP islets were microencapsulated and transplanted in non-immunosuppressed mice or NHPs given clinically-acceptable immunosuppressive regimens, respectively. Two NHPs were treated with autologous mesenchymal stem cells (MSCs) and peri-transplant oxygen therapy. Different transplant sites (intraperitoneal [i.p.], omental pouch, omental surface, and bursa omentalis) were tested in separate NHPs. Graft function was monitored by exogenous insulin requirements, fasting blood glucose levels, glucose tolerance tests, percent hemoglobin A1c (% HbA1c), and C-peptide levels. In vitro assessment of grafts included histology, immunohistochemistry, and viability staining; host immune responses were characterized by flow cytometry and cytokine/chemokine multiplex ELISAS. RESULTS: Microencapsulated islet allografts functioned long-term i.p. in diabetic NOD mice without immunosuppression, but for a relatively short time in immunosuppressed NHPs. In the NHPs, encapsulated allo-islets initially reduced hyperglycemia, decreased exogenous insulin requirements, elevated C-peptide levels, and lowered % HbA1c in plasma, but graft function diminished with time, regardless of transplant site. At necropsy, microcapsules were intact and non-fibrotic, but many islets exhibited volume loss, central necrosis and endogenous markers of hypoxia. Animals receiving supplemental oxygen and autologous MSCs showed improved graft function for a longer post-transplant period. In diabetic NHPs and mice, cell-free microcapsules did not elicit a fibrotic response. CONCLUSIONS: The evidence suggested that hypoxia was a major factor for damage to encapsulated islets in vivo. To achieve long-term function, new approaches must be developed to increase the oxygen supply to microencapsulated islets and/or identify donor insulin-secreting cells which can tolerate hypoxia
- …