38 research outputs found

    Hypervulnerability to Sound Exposure through Impaired Adaptive Proliferation of Peroxisomes

    Get PDF
    A deficiency in pejvakin, a protein of unknown function, causes a strikingly heterogeneous form of human deafness. Pejvakin-deficient (Pjvk(-/-)) mice also exhibit variable auditory phenotypes. Correlation between their hearing thresholds and the number of pups per cage suggest a possible harmful effect of pup vocalizations. Direct sound or electrical stimulation show that the cochlear sensory hair cells and auditory pathway neurons of Pjvk(-/-) mice and patients are exceptionally vulnerable to sound. Subcellular analysis revealed that pejvakin is associated with peroxisomes and required for their oxidative-stress-induced proliferation. Pjvk(-/-) cochleas display features of marked oxidative stress and impaired antioxidant defenses, and peroxisomes in Pjvk(-/-) hair cells show structural abnormalities after the onset of hearing. Noise exposure rapidly upregulates Pjvk cochlear transcription in wild-type mice and triggers peroxisome proliferation in hair cells and primary auditory neurons. Our results reveal that the antioxidant activity of peroxisomes protects the auditory system against noise-induced damage

    Vers une thérapie génique de certaines surdités congénitales ?

    No full text
    International audienceNo abstract availabl

    Thérapie génique des surdités humaines

    No full text
    Durant les vingt dernières années, des progrès considérables ont été accomplis dans la compréhension de la pathogénie des diverses formes de surdités, congénitales ou acquises. L’identification de gènes responsables de surdité chez l’homme, l’ingénierie et la caractérisation fonctionnelle de modèles murins de certaines formes de surdité humaine ont également fait progresser la physiologie moléculaire des cellules sensorielles auditives. Ces avancées ont ouvert la voie au développement de nouvelles stratégies thérapeutiques, alternatives aux prothèses conventionnelles (amplificateurs du son) ou aux implants cochléaires permettant d’améliorer la fonction auditive. Dans cette revue, nous présentons d’abord les progrès accomplis sur le chemin de la thérapie génique des surdités au cours de la dernière décennie. Nous discutons ensuite le potentiel de la thérapie génique pour traiter les surdités acquises ou héréditaires, ainsi que les principaux obstacles qui doivent être surmontés avant qu’une application clinique puisse être envisagée

    Progrès de la thérapie génique

    Get PDF
    La perte de l’audition et/ou de la fonction d’équilibration est un problème de santé publique majeur. La surdité touche des millions de personnes dans le monde. Leur prise en charge actuelle repose sur une réhabilitation prothétique sans réelle thérapie curative. Après deux décennies de recherches qui ont permis de progresser dans la physiopathologie de différentes formes génétiques de surdité, des avancées majeures ont été obtenues grâce à des études précliniques utilisant la thérapie génique virale chez l’animal. Ce succès, largement dû à l’amélioration des vecteurs de transfert, pourrait à terme révolutionner la prise en charge de certains malentendants. Nos progrès dans la compréhension des mécanismes cellulaires et moléculaires impliqués dans le fonctionnement de l’oreille interne ont contribué à ouvrir la voie à cette recherche à visée thérapeutique, qui consiste le plus souvent à remplacer localement les gènes endogènes altérés. Le but de cet article est de résumer les progrès récents de la thérapie génique dans la restauration des fonctions cochléaire et vestibulaire dans des modèles murins du syndrome d’Usher, principale cause génétique de surdité associée à une cécité. Nous nous concentrerons sur les approches thérapeutiques présentant le plus fort potentiel d’application clinique

    [Chapter 8] Mouse Models for Human Hereditary Deafness

    No full text
    International audienceHearing impairment is a frequent condition in humans. Identification of the causative genes for the early onset forms of isolated deafness began 15 years ago and has been very fruitful. To date, approximately 50 causative genes have been identified. Yet, limited information regarding the underlying pathogenic mechanisms can be derived from hearing tests in deaf patients. This chapter describes the success of mouse models in the elucidation of some pathophysiological processes in the auditory sensory organ, the cochlea. These models have revealed a variety of defective structures and functions at the origin of deafness genetic forms. This is illustrated by three different examples: (1) the DFNB9 deafness form, a synaptopathy of the cochlear sensory cells where otoferlin is defective; (2) the Usher syndrome, in which deafness is related to abnormal development of the hair bundle, the mechanoreceptive structure of the sensory cells to sound; (3) the DFNB1 deafness form, which is the most common form of inherited deafness in Caucasian populations, mainly caused by connexin‐26 defects that alter gap junction communication between nonsensory cochlear cells

    Gene therapy progress: hopes for Usher syndrome

    No full text
    International audienc

    The Auditory Hair Cell Ribbon Synapse: From Assembly to Function

    No full text
    International audienceCochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions

    Otoferlin Is Critical for a Highly Sensitive and Linear Calcium-Dependent Exocytosis at Vestibular Hair Cell Ribbon Synapses

    No full text
    International audienceOtoferlin, a C2-domain-containing Ca 2+ binding protein, is required for synaptic exocytosis in auditory hair cells. However, its exact role remains essentially unknown. Intriguingly enough, no balance defect has been observed in otoferlin-deficient ( Otof −/− ) mice. Here, we show that the vestibular nerve compound action potentials evoked during transient linear acceleration ramps in Otof −/− mice display higher threshold, lower amplitude, and increased latency compared with wild-type mice. Using patch-clamp capacitance measurement in intact utricles, we show that type I and type II hair cells display a remarkable linear transfer function between Ca 2+ entry, flowing through voltage-activated Ca 2+ channels, and exocytosis. This linear Ca 2+ dependence was observed when changing the Ca 2+ channel open probability or the Ca 2+ flux per channel during various test potentials. In Otof −/− hair cells, exocytosis displays slower kinetics, reduced Ca 2+ sensitivity, and nonlinear Ca 2+ dependence, despite morphologically normal synapses and normal Ca 2+ currents. We conclude that otoferlin is essential for a high-affinity Ca 2+ sensor function that allows efficient and linear encoding of low-intensity stimuli at the vestibular hair cell synapse

    Hair Cell Afferent Synapses: Function and Dysfunction

    No full text
    We are thankful to S. Masetto for the careful reading of an earlier draft of this reviewInternational audienceTo provide a meaningful representation of the auditory landscape, mammalian cochlear hair cells are optimized to detect sounds over an incredibly broad range of frequencies and intensities with unparalleled accuracy. This ability is largely conferred by specialized ribbon synapses that continuously transmit acoustic information with high fidelity and sub-millisecond precision to the afferent dendrites of the spiral ganglion neurons. To achieve this extraordinary task, ribbon synapses employ a unique combination of molecules and mechanisms that are tailored to sounds of different frequencies. Here we review the current understanding of how the hair cell's presynaptic machinery and its postsynaptic afferent connections are formed, how they mature, and how their function is adapted for an accurate perception of sound

    Pre-and postsynaptic M3 muscarinic receptor mRNAs in the rodent peripheral auditory system

    Get PDF
    International audienceThe medial and lateral efferent innervations originate from distinct parts of the superior olivary complex. Both use acetylcholine, respectively, to modulate the activity of outer hair cells (OHC), and spiral ganglion neurons (SGN) which are postsynaptic to the inner hair cells (IHC). Besides predominantly activating nicotinic receptors, acetylcholine recognizes muscarinic M3 receptors, whose the role(s) and cellular localization(s) are not yet firmly established. We used reverse transcription and polymerase chain reaction to amplify the M3 receptor cDNA in the rat and guinea pig organ of Corti and spiral ganglion. Then, we localized the M3 receptor mRNAs in cochleas and superior olivary complex of both species. The M3 receptor cDNA was amplified from samples of brain, organ of Corti and spiral ganglion. Indeed, its corresponding mRNA was localized in SGNs, OHCs and IHCs. However, in the apical turns, OHCs were often found unlabeled. In the superior olivary complex, M3 mRNAs were colocalized with choline acetyltransferase mRNAs in neurons of the lateral superior olive and ventral nucleus of the trapezoid body. These results suggest that the M3 receptor-induced inositol phosphate formation described in previous studies [21] takes place in both postsynaptic (SGNs, OHCs) and presynaptic components of efferent cochlear synapses, and in cells that are not contacted by efferents in the adult cochlea (IHCs)
    corecore