47 research outputs found

    The Incompressible Navier-Stokes Equations From Black Hole Membrane Dynamics

    Get PDF
    We consider the dynamics of a d+1 space-time dimensional membrane defined by the event horizon of a black brane in (d+2)-dimensional asymptotically Anti-de-Sitter space-time and show that it is described by the d-dimensional incompressible Navier-Stokes equations of non-relativistic fluids. The fluid velocity corresponds to the normal to the horizon while the rate of change in the fluid energy is equal to minus the rate of change in the horizon cross-sectional area. The analysis is performed in the Membrane Paradigm approach to black holes and it holds for a general non-singular null hypersurface, provided a large scale hydrodynamic limit exists. Thus we find, for instance, that the dynamics of the Rindler acceleration horizon is also described by the incompressible Navier-Stokes equations. The result resembles the relation between the Burgers and KPZ equations and we discuss its implications.Comment: 5 pages; v2: expanded discussion to clarify a few points, title slightly change

    3-D Perturbations in Conformal Turbulence

    Full text link
    The effects of three-dimensional perturbations in two-dimensional turbulence are investigated, through a conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and energy cascades, in a strong coupling limit, and compare them to the values found in recent experiments. The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple physical picture in which the existence of small scale random forces is closely related to deviations of the exact two-dimensional fluid motion.Comment: Discussion of intermittency improved. Figure include

    The role of tank-treading motions in the transverse migration of a spheroidal vesicle in a shear flow

    Full text link
    The behavior of a spheroidal vesicle, in a plane shear flow bounded from one side by a wall, is analysed when the distance from the wall is much larger than the spheroid radius. It is found that tank treading motions produce a transverse drift away from the wall, proportional to the spheroid eccentricity and the inverse square of the distance from the wall. This drift is independent of inertia, and is completely determined by the characteristics of the vesicle membrane. The relative strength of the contribution to drift from tank-treading motions and from the presence of inertial corrections, is discussed.Comment: 16 pages, 1 figure, Latex. To appear on J. Phys. A (Math. Gen.

    Drag forces on inclusions in classical fields with dissipative dynamics

    Full text link
    We study the drag force on uniformly moving inclusions which interact linearly with dynamical free field theories commonly used to study soft condensed matter systems. Drag forces are shown to be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag forces on proteins in membranes due to couplings to various physical parameters of the membrane such as composition, phase and height fluctuations.Comment: 14 pages, 7 figure

    Enroute Flight Data of Wake Vortex Core Profiles and Properties from Yawed Traverses

    No full text

    A Fokker—Planck treatment of non-linearly interacting waves

    No full text
    corecore