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Abstract The reliable measurement of mean flow prop-

erties near walls and interfaces between different fluids or

fluid and gas phases is a very important task, as well as a

challenging problem, in many fields of science and tech-

nology. Due to the decreasing concentration of tracer

particles and the strong flow gradients, these velocity

measurements are usually biased. To investigate the reason

and the effect of the bias errors systematically, a detailed

theoretical analysis was performed using window-correla-

tion, singe-pixel ensemble-correlation and particle tracking

evaluation methods. The different findings were validated

experimentally for microscopic, long-range microscopic

and large field imaging conditions. It is shown that for

constant flow gradients and homogeneous particle image

density, the bias errors are usually averaged out. This

legitimates the use of these techniques far away from walls

or interfaces. However, for inhomogeneous seeding and/or

nonconstant flow gradients, only PTV image analysis

techniques give reliable results. This implies that for wall

distances below half an interrogation window dimension,

the singe-pixel ensemble-correlation or PTV evaluation

should always be applied. For distances smaller than the

particle image diameter, only PTV yields reliable results.

1 Introduction

Digital particle image velocimetry (DPIV) has become one of

the most widespread techniques for the investigation of flows

because it allows for the instantaneous measurement of the

flow field in a plane or volume without disturbing the flow or

fluid properties (Adrian and Westerweel 2010; Raffel et al.

2007). Moreover, this technique presents the advantage that

spatial flow features can be resolved and gradient-based

quantities such as the vorticity can be calculated. In addition,

correlation and spectral methods can be applied to analyze the

velocity fields. In most cases, though, the technique is applied

to efficiently measure average quantities such as mean

velocity or Reynolds stress distributions because these are still

the most relevant variables for the validation of numerical

flow simulations and the verification or disproof of theories or

models in fluid mechanics.

For a myriad of applications, the flow close to surfaces is of

high interest. In biological flows for instance, the determina-

tion of the flow field around cells is very important as the

behavior of cells can often be directly related to different

magnitudes of the wall-shear stress. In medical flows, the

wall-shear stress also plays a major role for the mechanical

response of endothelial cells responsible for cardiovascular

diseases (Buchmann et al. 2011; Rossi et al. 2009) or for the

deposition of aerosols in lungs (Theunissen et al. 2006). In the

field of process engineering, the manipulation of particles or

droplets (Burdick et al. 2001) and the fluid droplet/bubble

interaction (Champagne et al. 2010) requires a deep under-

standing of the near-wall flow phenomena. For turbulent

boundary layer research, it is as well very important to resolve

the near-wall flow field precisely, as the velocity profiles are

typically normalized with the local mean velocity component

�uðx; yÞ or the friction velocity us defined as:

us ¼
ffiffiffiffiffi

sw

q

r

ð1Þ

where q is the fluid density. Since the wall-shear stress sw

is given by:
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sw ¼ lim
y!0

l
o�u

oy
; ð2Þ

where l is the viscosity of the fluid, the need to measure

the mean flow gradient o�u=oy precisely down to the wall is

evident for a proper comparison of experimental, theoret-

ical and numerical results (Alfredsson et al. 2011; Bitter

et al. 2011; Fernholz and Finley 1996; Marusic et al. 2010;

Nagib et al. 2007; Nickels 2004).

In order to resolve the flow field near walls and inter-

faces, it is important

1. to sample the flow motion down to the wall with

appropriate tracer particles that follow the fluid motion

with sufficient accuracy, as discussed in Wernet and

Wernet (1994), Melling (1997) and Kähler et al. (2002),

2. to use fluorescent particles as is typically done in

microfluids (Santiago et al. 1998) or a tangential illumi-

nation along a properly polished wall (Kähler et al. 2006),

such that the wall reflection can be suppressed,

3. to image the particles properly with a lens or a

microscope objective such that the particle signal can

be well sampled on a digital camera (Adrian 1997;

Hain et al. 2007; Kähler et al. 2012) and

4. to estimate the particle image displacement with

digital particle imaging analysis methods (Ohmi and

Li 2000; Scarano 2001; Stanislas et al. 2003, 2005,

2008).

Three different evaluation methods are well-established:

The first one is the window-correlation method that can

be used to evaluate single image pairs in order to investi-

gate instantaneous flow phenomena (Adrian and Wester-

weel 2010; Raffel et al. 2007) or to estimate mean flow

properties as discussed in Meinhart et al. (2000). One

drawback associated with this evaluation concept is the low

dynamic spatial range (DSR), which is usually in the range

between 20 and 250. Thus, the range of spatial scales

which can be resolved with the technique is rather small.

Other drawbacks result from the nonuniform particle image

distribution in the vicinity of the wall and the spatial low-

pass filtering that bias the location of the correlation peak

in the case of near-wall flow investigations. Theunissen

et al. (2008) reduced the problem of the nonuniform

seeding by a vector reallocation on the basis of the gray

levels within the interrogation window. Another approach

was presented by Nguyen et al. (2010), who used a con-

formal transformation of the images at the wall and later

correlated only 1D stripes of gray values on a line parallel

to the surface. The velocity profile was later directly

determined by a fit of the highest correlation peaks of all

the lines. This method improves the resolution in the wall-

normal direction at the expense of the resolution in the

other direction.

The second evaluation method is the single-pixel

ensemble-correlation that estimates mean flow properties

from an ensemble of image pairs. Here, the spatial reso-

lution is improved in two dimensions, and the accuracy is

significantly increased. This evaluation technique was first

applied by Westerweel et al. (2004) for stationary laminar

flows in microfluidics. In the last years, the approach was

extended for the analysis of periodic laminar flows (Billy

et al. 2004), of macroscopic laminar, transitional and tur-

bulent flows (Kähler et al. 2006) and for compressible

flows at large Mach numbers (Kähler and Scholz 2006;

Bitter et al. 2011). Scholz and Kähler (2006) have exten-

ded the high-resolution evaluation concept also for ste-

reoscopic PIV recording configurations. Recently, based on

the work of Kähler and Scholz (2006), the single-pixel

evaluation was further expanded to estimate Reynolds

stresses in turbulent flows with very high resolution

(Scharnowski et al. 2011). In principle, the interrogation

window size can be reduced down to a single pixel, but it

was shown that the resolution is determined by the parti-

cle image size rather than the pixel size (Kähler et al.

2012). This leads to a dynamic spatial range of up to

DSR = 2,000, which is an enormous improvement com-

pared to window-correlation analysis. Although the tem-

poral information is lost using this evaluation approach,

important quantities such as the Reynolds normal and shear

stresses can be extracted with improved resolution and

precision, as outlined in Scharnowski et al. (2011).

The third established method for the evaluation of DPIV

images is particle tracking velocimetry (PTV). Since the

resolution of PTV is not affected by the digital particle

image diameter, as shown in Kähler et al. (2012), this

technique is often superior to correlation-based methods.

However, good image quality is required for reliable

measurements and, due to the random location of the

velocity vectors, the application of correlation and spectral

methods for the vector field analysis becomes difficult and

interpolation techniques are required for the estimation of

quantities based on velocity gradients. Because of the

lowered seeding concentration, the dynamic spatial range is

comparable to window-correlation techniques for instan-

taneous fields. However, if averaged data are of interest,

the dynamic spatial range can be increased even beyond the

range of the single-pixel evaluation to the subpixel range

(Kähler et al. 2012).

The combination of PIV and PTV was also proposed by

several authors to combine the robustness of correlation-

based methods with the spatial resolution of tracking

algorithms (Keane et al. 1995; Stitou and Riethmuller

2001). However, all evaluation methods have their

respective strengths and weaknesses. Therefore, guidelines

are important to know the conditions under which each

method performs best. In Sects. 2 and 3, synthetic DPIV
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images are evaluated using the different methods to assess

systematic errors in the vicinity of the wall. Section 4

shows the impact of the resolution limit on the estimation

of the near-wall velocity for a macroscopic turbulent

boundary layer flow experiment as well as for a micro-

scopic laminar channel flow. Finally, all findings will be

summarized and guidelines will be given in Sect. 5.

2 Synthetic test cases

In this section, a fundamental analysis of a synthetic image

set is performed for three reasons: first, it gives full control

of all parameters considered for the simulation (as opposed

to experiments where many uncertainties exist such as

local density, temperature, viscosity, flow velocity, particle

properties, illumination power and pulse-to-pulse stability,

local energy density in the light sheet, imaging optics,

recording medium, and bias effects due to data transfer that

are unknown or cannot be precisely controlled as can be

done with simulations). Second, the variation of single

parameters is possible (which is often difficult to do in

experiments because of the mutual dependence of the

parameters like light intensity and signal-to-noise ratio,

optical magnification and lens aberrations). Third, the

range of the parameters can be increased beyond the

experimentally accessible range (higher shear rates and

turbulence levels, higher particle concentrations…).

The major drawback of the synthetic image approach is

that not all physical effects can be simulated properly

because of a lack of physical knowledge and the fact that

each experimental setup is unique. Thus, the idealized

assumptions and approximations that are used in simula-

tions lead to deviations from experimental results. To keep

the deviations small, the important physical effects must be

considered, while the higher-order effects, which are below

the resolution limit of the techniques, can be neglected. As

this requires an a priori knowledge, experiments are always

necessary to prove the main predictions and sensitivities of

the simulations and to estimate the uncertainty of the

simulation relative to the experiment. This will be done in

Sect. 4.

In order to determine the resolution and the measure-

ment uncertainty for velocity vectors close to the surface,

synthetic DPIV images with different digital particle image

diameters D were generated and analyzed. The center

positions of the particle images were distributed randomly

to simulate a homogeneous seeding concentration. The

intensity for each pixel was computed from the integral of a

Gaussian function (where D is four times the standard

deviation) over the pixel’s area, representing a sensor fill

factor of one. Additionally, Gaussian noise with zero mean

intensity and a standard deviation of 1 % of the particle

images’ maximum intensity was added to simulate a sig-

nal-to-noise ratio of 100:1. The digital particle image

diameter varied from D = 1 px (which is typical for

experiments in air with large observation distances) up to

D = 20 px (which is common in experiments with large

magnification), as illustrated in Fig. 1. 10,000 image pairs

were generated for each digital particle image diameter.

The seeding concentration was about 25 % for the corre-

lation methods and 5 % for particle tracking. This is to say

that 25 or 5 % of the image was composed by particle

images. Consequently, the number of particle images

changes with the digital particle image diameter, which

also holds true in real experiments if the magnification is

increased using a constant physical seeding concentration.

A displacement profile with a constant gradient of

oDX�=oY� ¼ 0:1 px/px was simulated to illustrate the

effects and main sensitivities. Since spatial gradients are

assumed to be negligible as long as the gradient multiplied

with the interrogation window dimension is less or com-

parable to the particle image diameter, this implies that for

a 8 9 8 px and 16 9 16 px window, the chosen gradient

should be irrelevant for particle image diameters of 2–3 px,

while for a 32 9 32 px window, it becomes slightly larger

than recommended (Keane and Adrian 1992). The surface

was located several pixels away from the border of the

DPIV images and was slightly tilted (1:20) with respect to

the image boarder to simulate the wall location at random

subpixel positions. (X, Y) corresponds to the image coor-

dinates, while ðX�; Y�Þ denotes the wall-parallel and wall-

normal coordinates, respectively. Only particle images

with a random center position above the simulated surface

were generated. Even though all particles are located above

the wall, their images can extend into the region below the

wall. This effect is illustrated in Fig. 1, where the synthetic

D = 1 px D = 3 px D = 5 px

D = 10 px D = 15 px D = 20 px

Fig. 1 Synthetic images of a near-wall boundary layer for different

digital particle image diameters D. The surface position is indicated

by the black line. 100 9 100 px are shown for each case
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images in the near-wall region of the boundary layer are

shown for different digital particle image diameters D. This

implies a virtual velocity at negative Y�-locations. In real

experiments, this leads to the problem that the wall location

cannot be estimated reliable from the velocity profile.

However, for some experiments, the particle images are

mirrored at the surface; in this case, the wall location can

be determined precisely from the velocity profile (Kähler

et al. 2006).

In the following discussion, the synthetic images are

analyzed using window-correlation, single-pixel ensemble-

correlation and particle tracking velocimetry. Frequently

used variables are listed in Table 1.

3 Comparison of evaluation techniques

3.1 Window-correlation

The window-correlation-based evaluation was performed

for a digital particle image diameter of D = 3 px, which is

close to the optimal value to achieve low RMS-uncertain-

ties (Raffel et al. 2007; Willert 1996). Four different

interrogation window sizes ranging from 8 9 8 px to

64 9 64 px were applied. The evaluation was performed

using a commercial software (DaVis by LaVision GmbH)

with a sum-of-correlation approach. For each interrogation

window size, 100 image pairs were analyzed.

The resulting wall-parallel and wall-normal shift vector

components ðDX�;DY�Þ are shown in Fig. 2 as a function

of the wall-normal image coordinate Y�. Since the simu-

lated surface was slightly tilted, the investigation covers all

subpixel distances. For larger window sizes, the typical

systematic bias error becomes prominent for the estimated

wall-parallel shift vector component DX�: Its magnitude is a

function of the correlation window dimension in the wall-

normal direction. The wall-parallel shift vector component is

overestimated for locations that are closer to the wall than half

the height of the interrogation window. The strong bias error is

due to the fact that the mean particle image displacement,

averaged over the interrogation window area, is associated with

the center position of the window if no vector reallocation is

performed. Therefore, even under ideal conditions (constant

flow gradient, homogeneous particle image distribution, iden-

tical particle image intensity and size), no reliable near-wall

displacement can be expected for distances smaller than half the

interrogation window dimension in the wall-normal direction.

For the 16 9 16 px interrogation window, for example, vectors

located below Y� = 8 px are biased as expected.

The magnitude of the systematic error of the wall-par-

allel shift vector component dDX�wall at the wall position

Y� = 0 px is dependent on the interrogation window height

WY and the mean gradient o �DX�=oY� in the near-wall

region. Without compensating for inhomogeneous particle

image distribution, the following bias error occurs:

dDX�wall ¼
Wy

4
� o

�DX�

oY�
: ð3Þ

In this simple model, the interrogation window centered at

Y� = 0 px is, on average, only half occupied with particle

images. Thus, the mean displacement within this window is

equal to the wall-parallel shift vector component at Y� = WY/

4 for constant gradients. The vertical displacement compo-

nent, shown on the bottom of Fig. 2, is not systematically

Table 1 Frequently used variables and their meaning

Quantity Symbol Unit

Particle diameter dp lm

Particle image diameter ds lm

Digital particle image diameter D px

Dynamic spatial range DSR m/m

Optical magnification M m/m

Spatial resolution res m

Wall-parallel shift vector component DX� px

Wall-normal shift vector component DY� px

Wall-normal image coordinate Y� px

Wall-shear stress sw N/m2

Friction velocity us m/s

Normalized wall-normal coordinate y? = y � uT=v –

Boundary layer thickness d99 mm

interrogation window height WY px
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0
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x

8 × 8 px
16 × 16 px
32 × 32 px
64 × 64 px
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−0.5
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ΔY
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x

Y* in px

Fig. 2 Estimated displacement profiles for a simulated constant

gradient in the near-wall region of a boundary layer using window-

correlation for different interrogation windows
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affected since DY� is constant. For the case of a nonconstant

shift vector gradient, an additional bias error on the estimated

shift vector is expected, which scales with the profile’s cur-

vature and the interrogation window size.

It is important to note that shift vectors below the surface

are computed although no particle positions were generated in

this region. This is because the interrogation windows cen-

tered below the surface are still partly filled with the images of

the particles located above the surface. When the wall location

is known, the vectors can be easily rejected. However, in the

case of a tangential illumination or fluorescent particles, the

wall is not visible at all and the wall detection may become

problematic. It is obvious that a proper reallocation of the

vectors must be made and a suitable alignment and optimized

size of the interrogation windows must be used to minimize

these effects. However, this is difficult to achieve close to solid

surfaces and interfaces as the ideal conditions (constant flow

gradient, homogeneous particle image distribution, straight

walls…) do not generally hold in real experiments.

3.2 Single-pixel ensemble-correlation

In the case of the single-pixel ensemble-correlation anal-

ysis, the limitations associated with the window-correlation

evaluation approach do not apply as the interrogation

window size can be reduced to a single pixel. However,

although the flow is sampled up to a single pixel, the res-

olution is limited by the digital particle image diameter. It

can be shown that the single-pixel analysis leads to a

maximum resolution of 1.84 px, as discussed in detail in

Kähler et al. (2012). The single-pixel ensemble-correlation

was performed for different digital particle image diame-

ters ranging from 1 to 20 px using 10,000 DPIV image

pairs. The correlation functions were computed using the

following equation:

with the standard deviation given by:

rA X; Yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N � 1

X

N

n¼1

An X; Yð Þ � �A X; Yð Þ½ �2
v

u

u

t ð5Þ

where N is the total number of DPIV image pairs and n the

corresponding control variable. (X, Y) and (n , w) are the

discrete coordinates in physical space and on the correla-

tion plane, respectively. An and Bn are the gray value

distribution of the first and second DPIV image of the nth

image pair, respectively. The maximum of the correlation

peak was determined using a three-point Gauss estimator

for each direction.

Figure 3 shows the estimated wall-parallel and wall-

normal displacement components with respect to the

wall-normal distance Y� for D = [1, 5, 10, 20] px. The

wall-parallel component is strongly biased for the digital

particle image diameter of D = 1 px due to the peak

locking effect, which is a systematic error caused by the

discretization of the measured signal (Adrian and Westerweel

2010; Fincham and Spedding 1997; Kähler 1997; Raffel et al.

2007). As peak locking has a dramatic effect on the higher-

order statistics of velocity profiles, according to Christensen

(2004), measurements with a significant amount of small

particles are not suited for high-precision flow analysis and

should be considered with care. No obvious peak locking is

visible for particle images larger than D = 3 px, which is in

agreement with Raffel et al. (2007).

The estimated displacement profile �DXestimatedðYÞ is

biased due to the evaluation principle of single-pixel

−5 0 5 10 15 20 25

0

1

2

Δ X
*  in

 p
x

D = 1 px
D = 5 px
D = 10 px
D = 20 px
simulated

−5 0 5 10 15 20 25
−0.5

0

0.5

Δ Y
*  in

 p
x

Y* in px

Fig. 3 Estimated displacement profiles for a simulated constant

gradient in the near-wall region of a boundary layer using single-pixel

ensemble-correlation for different digital particle image diameters

Cðn;w;X; YÞ ¼
X

N

n¼1

An X; Yð Þ � �A X; Yð Þ½ � � Bn X þ n; Y þ wð Þ � �B X þ n; Y þ wð Þ½ �
rA X; Yð Þ � rB X þ n; Y þ wð Þ ð4Þ
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ensemble-correlation, as illustrated in Fig. 4. To explain

this result, Eq. (4) can be transformed in an analytical

expression which shows that the displacement profile is

the convolution of the normalized auto-correlation of the

particle image R(D, Y) and the actual velocity profile
�DXtrueðYÞ (Kähler and Scholz 2006; Scharnowski et al.

2011; Wereley and Whitacre 2007). For the wall-normal

direction, this can be described in the following 1-D

equation:

�DXestimatedðYÞ ¼
Z

1

�1

RðD; Y � wÞ � �DXtrueðwÞdw: ð6Þ

In order to estimate the difference between the true and the

measured shift vector component, the integral in Eq. (6)

must be solved for a specified auto-correlation and a

velocity profile. The diffraction limited image of a tiny

particle, in Fraunhofer approximation, can be described by

a Gaussian intensity distribution function, and due to the

fact that the auto-correlation function of a Gaussian

function is a Gaussian function, broadened by a factor of
ffiffiffi

2
p

; we can write:

RðD; YÞ ¼ 2

D
ffiffiffi

p
p � e�

4�Y2

D2 ð7Þ

The normalization by the factor in front of the exponential

term in Eq. (7) ensures that the integral over Y equals one.

The simulated displacement profile with constant gradient

used in this analysis can be described as follows:

�DX�trueðY�Þ ¼ HðY�Þ � Y� � o
�DX�true

oY�
; ð8Þ

where HðY�Þ represents the Heaviside step function. Using

Eqs. (7) and (8) for the normalized auto-correlation and the

simulated displacement profile, respectively, results in the

following estimated shift vector profile:

DX�estimatedðY�Þ ¼
o �DX�

oY�
� D

4
ffiffiffi

p
p � e�

4�Y�2
D2 þ 1

2
1þ Erf

2 � Y�
D

� �� �� �

:

ð9Þ
For large distances from the wall (Y� � D), the

Gaussian in Eq. (9) becomes zero and the error function

becomes one. Thus, the estimated shift vector is not biased

in the case of homogeneous seeding and constant gradients:

DX�estimatedðY� � DÞ ¼ o �DX�

oY�
� Y� ¼ DX�trueðY�Þ: ð10Þ

On the other hand, the velocity profile is strongly biased in

the vicinity of the wall. The magnitude of the systematic

error of the wall-parallel shift vector component dDX�wall

from Eq. (9) at the position of the wall at Y� = 0 px is

proportional to the digital particle image diameter D and

the mean gradient o �DX�=oY� in the near-wall region:

dDX�wall ¼ DX�estimatedðY� ¼ 0Þ ¼ D

4
ffiffiffi

p
p � o

�DX�

oY�
: ð11Þ

The analytical bias error of the wall-parallel shift vector

component is in good agreement with the simulated values

within the shift vector profiles shown in Fig. 3. Thus, from

the theoretical point of view, it seems possible to com-

pensate for the bias error produced by the correlation

procedure. However, in the case of real DPIV images, the

inhomogeneous particle image distribution and the real

shape of the velocity profile are not generally known.

Furthermore, the deconvolution of the discrete values

computed from digital images is a mathematically ill-posed

problem.

It is interesting to note that the wall-normal component

DY� is also biased in the near-wall region (Fig. 3, bottom)

because the particle images further away from the wall

broaden the correlation peak only on the side facing away

from the surface. In the case of flows with constant gra-

dients and ideal conditions (homogeneous particle image

distribution…), this effect is averaged out as long as the

particle is at least Y�[ D/2 away from the wall. In case of

instantaneous flow measurements with window-correlation

PIV, this effect cannot be avoided and results in an

increased random error.

For negative Y� values, the effect causing the systematic

motion in the positive Y� direction can reverse, see Fig. 3

at D = 10 and Y�\ -2.5 px. This bias error is due to the

normalization of the correlation by its variance. For regions

lower than Y�\ D/2, the gray value distribution over the

ensemble can only have values lower than the maximum

intensity and only for particles that are within a range of

Y�\ D. If these ensembles are correlated with ensembles

further away (?) from the wall, more signal peaks (due to

the uniform seeding) with large magnitudes up to the

maximum intensity are present. Some of them might give a

velocity profile 

surface 

estimated 
velocity 
profile is 

biased D/2 

particle image particle 

Fig. 4 Motion of particles (dark dots) and particle images (gray
circles) in the near-wall region. The estimated velocity profile is

biased within a distance of D/2 from the surface
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good correlation. However, the peak is averaged by its

variance that is quite high for these signals, and thus, the

correlation value itself is low.

If the aforementioned gray value distribution is corre-

lated with an ensemble closer to the wall (-), there are no

signals from other particle images, since there are no par-

ticles below the wall. In addition, the signal gets lower as it

approaches the wall and thus the already good correlation

is normalized by a small variance. The peaks closer to the

wall (-) are therefore more pronounced than the peaks

further away (?) and the wall-normal component reverses.

Some correlation peaks in the vicinity of the wall are

shown in Fig. 5.

Nevertheless, sw can be estimated directly from the first

values above the wall that are not biased according to Eq.

(9). Now the experimenter has to determine whether the

positions of these first reliable vectors are close enough for

the estimation of the wall-shear stress, that is they belong

to the viscous sublayer of a turbulent boundary layer flow,

for instance, or not and whether the mean particle image

displacement is large enough for reliable measurements

with low uncertainty.

3.3 Particle tracking velocimetry

The previous analysis shows that the resolution of window-

correlation and single-pixel ensemble-correlation is limited

by the window size and the digital particle image diameter,

respectively. Thus, the question arises whether the resolu-

tion can be further enhanced using PTV algorithms that are

not based on image correlations. For elaborate particle

tracking algorithms, high seeding concentrations are no

longer a limitation (Ohmi and Li 2000). However, the main

source of random errors are associated with low SNR and

overlapping particle images. As illustrated in Fig. 6, the

RMS-uncertainty rPTV of the displacement estimation

increases with increasing seeding concentration as opposed

to the number of valid vectors R1 and the ratio of detected

particles to the number of generated particles R2 which

decrease strongly. Therefore, the particle image density

was reduced to 5 % (illuminated area) in order to avoid an

increasing measurement uncertainty caused by overlapping

particle images. Figure 7 shows the random error further

away from the wall, computed with single-pixel ensemble-

correlation and PTV, with respect to the digital particle
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image diameter D. The random error is fairly constant

below 0.03 px in the case of single-pixel ensemble-corre-

lation for D ¼ 2. . .20 px. A much more pronounced influ-

ence of the digital particle image diameter can be seen for

the PTV results. In addition, the big difference of the error

using different centroid estimation methods is highlighted

by the three curves. The line denoted as ‘PTV-GC’ uses a

correlation of a Gaussian with the particle image, the curve

denoted as ‘PTV-GF’ shows results of a 2D Gaussian fit for

the center estimation, and PTV-MH indicates a Mexican

Hat wavelet algorithm to detect the particle center. In

general, the PTV-GC approach shows good results for

particle images larger than D [ 4 px. The error is lower

than 0.01 px for D ¼ 6. . .15 px. The Gaussian fit estima-

tion shows good results for a much larger range of diam-

eters, which is related to the fact that the synthetic images

resemble a Gaussian intensity distribution integrated on the

pixel grid of the camera sensor. In this case, the error is

lower than 0.01 px for D ¼ 3. . .15 px.

The evaluation was again performed for digital particle

image diameters ranging from 1 to 20 px. Figure 8 shows

the estimated wall-parallel and wall-normal displacement

components with respect to the wall-normal distance Y� for

D = [1, 5, 10, 20] px. It is clearly visible that in the case

of D = 1 px, the PTV evaluation causes extreme peak

locking. This is due to the fact that the position of particle

images seems to be at the center of a pixel for very small

digital particle image diameters. For the data presented

here, the center was estimated to be at the highest corre-

lation of the particle images with a Gaussian function

(denoted as PTV-GC in Fig. 7). In principle, for each type

of particle images, a suitable function can be found to

determine the particle image center. A Mexican hat func-

tion performed particularly well for microfluidic investi-

gations (Cierpka et al. 2010). However, for the synthetic

images used here, a Gaussian fit requires much more

computational time but is better suited as can be seen in

Fig. 7, indicated by PTV-GF. The results are unsatisfactory

only for small particle images. For particle images larger

than D = 3 px, the PTV approach works well with a

manifold of different particle detection algorithms (Car-

dwell et al. 2011). Despite the random errors, it should be

noted that no bias error appears, as observed for window-

correlation and single-pixel ensemble-correlation close to

the wall. The near-wall displacement is not overestimated

and no displacement vectors are computed for Y�\ 0 px

since no particle images are present in this region. Espe-

cially in microfluidics, where large particle images are

typically present, PTV is often better suited for the velocity

estimation, as discussed in Cierpka and Kähler (2012).

3.4 Near-wall gradient

The comparison of the three evaluation techniques showed

significant differences for the estimated shift vector profiles

of the synthetic near-wall flow with constant gradient.

Figure 9 summarizes the results using a digital particle

image diameter of D = 5 px for window-correlation,

single-pixel ensemble-correlation and particle tracking

velocimetry. In the case of window-correlation, an inter-

rogation window size of 16 9 16 px was used. It can

clearly be seen from Fig. 9 that the biased region extends

to Y� & 8 px for window-correlation, whereas the biased
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region and the bias error itself are much smaller in the case

of single-pixel ensemble-correlation. Furthermore, the PTV

results appear bias-free.

For the estimation of the wall-shear stress, the mean

near-wall gradient is determined from the shift vector

profiles. Figure 10 shows the gradient oDX�=oY� of the

profiles from Fig. 9 with respect to the wall-normal dis-

tance. Each point in Fig. 10 represents the slope of a linear

fit-function applied to three points of the profile. The error

bar corresponds to the 95 % confidence interval of the fit

parameters. Again, the size of the biased region strongly

depends on the applied evaluation technique. It is inter-

esting to note that the very first data point is also biased in

the case of PTV. This is due to the uncertainty in the

estimation of the particle image positions: Particles slightly

further away from the surface, with slightly higher veloc-

ity, might be associated with the wall location, but, on the

other hand, no particles can be found below the surface.

Based on these results, it can be concluded that for the

estimation of the near-wall gradient, the only shift vectors

that can be used are those that have a distance normal to the

surface larger than

• half the interrogation window size in the case of

window-correlation (without vector reallocation),

• half the particle image diameter in the case of single-

pixel ensemble-correlation and

• the uncertainty of the estimated particle image position

in the case of PTV.

Additionally, the selected shift vectors must belong to the

viscous sublayer such that the normalized wall distance y?

is not larger than five and the displacement must be large

enough for a reliable estimation as the slope of the gradient

depends on both the location and velocity at the same time.

Therefore, it is often more accurate to use particle imaging

techniques than LDV or hotwire probes for the analysis of

flows with strong velocity gradients. LDV or hotwires are

more precise than single-pixel DPIV and PTV in estimat-

ing the velocity; however, the error in estimating the exact

location of the measurement volume (or the particle

position inside the volume) is much larger. For single-

pixel DPIV and PTV, in contrast, the locations of the

particles are precisely known from the image analysis.

4 Experimental verification

To prove the findings of the previous section, three

experiments were performed at magnifications of M = 0.1,

2.2 and 12.6 to cover the imaging range from the macro-

scopic to the microscopic domain. Experiments at

low-magnification realize a large field of view with small

particle images and a high particle image density, in gen-

eral. Thus, low-magnification experiments are well suited

for single-pixel ensemble-correlation or window-correla-

tion depending on the number of image pairs. Increasing

the magnification results in larger particle images and does

not gain much spatial resolution in case of correlation-

based DPIV evaluation, as discussed in detail in Kähler

et al. (2012). However, PTV evaluation results in increased

spatial resolution in the case of a large number of image

pairs, as the resolution is only limited by the error in the

determination of the particle image location and the par-

ticle image displacement.

4.1 Large field DPIV investigation at low

magnification

The first experiment was performed in the large-scaled

Eiffel type wind tunnel located at the Universität der

Bundeswehr München. The facility has a 22-m-long test

section with a rectangular cross-section of 2 9 2 m2. The

flat plate model is composed of coated wooden plates with

a super-elliptical nose with a 0.48-m-long semi-axis in the

stream-wise direction. The flow was tripped 300 mm

behind the leading edge of the plate by a sandpaper strip.

Three DEHS particle seeders producing fog with a mean

particle diameter of dP & 1 lm (Kähler et al. 2002) were

used to sample the flow. The light sheet for illuminating the

particles was generated by a Spectra Physics Quanta-Ray

PIV 400 Nd:YAG double-pulse laser. The light sheet

thickness was estimated to be 500 lm. For the flow mea-

surements, a PCO.4000 camera (at a working distance of

1 m) in combination with Zeiss makro planar objective

lenses with a focal length of 100 mm was used. The results

presented here are taken at 6 m/s free stream velocity,

which corresponds to a Reynolds number based on
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momentum thickness at the measurement location of Red2

= 4,600. A detailed description of the experimental setup is

outlined in Dumitra et al. (2011). In order to resolve the

complete boundary layer velocity profile, a large field of

view was selected that extends almost 250 mm in the wall-

normal direction. The particle image concentration is close

to 100 % (illuminated area), and the digital particle image

diameter is in the range of D � 2. . .3 px. These conditions

are well suited for the single-pixel ensemble-correlation,

according to Fig. 7 and the analysis in Sect. 3.2. On the

other hand, the small particle image size and the high

concentration, which causes a large amount of overlapping

images, would lead to large errors for PTV, according to

Fig. 6. Thus, this low-magnification data set is evaluated

using single-pixel ensemble-correlation.

Figure 11 shows the boundary layer velocity profile

evaluated with single-pixel ensemble-correlation. The

profile represents the stream-wise velocity, averaged in the

stream-wise direction over a length of x = 7.6 mm. In

total, 2,300 double frame images were processed. For the

current magnification, the resolution in the wall-normal

direction is 230 lm which gives a spatial dynamic range of

1,000 independent velocity vectors. In normalized wall

units, the resolution corresponds to yþ ¼ y � uT=v & 4 and

the first data points are already at the limit of the viscous

sublayer (y? B 5). Due to the large field of view and the

high dynamic spatial range (DSR), which corresponds to

the number of independent vectors in each direction, the

boundary layer thickness could be reliably determined to

be d99 = 130 ± 4 mm. Thus, the relative uncertainty in

estimating this quantity is about 3 %. However, precisely

measuring the mean flow gradient o�u=oy down to the wall

is not possible since the viscous sublayer (y? \ 5) is not

resolved sufficiently, as shown in the normalized semi-

logarithmic representation in Fig. 12. Using the Clauser

method (Clauser 1956), the wall-shear stress can be esti-

mated from the logarithmic region of the boundary layer

profile by means of the following equation:

uðyÞ
us
¼ 1

j
� ln y � us

m

� �

þ B ð12Þ

The uncertainty of this approach is that the value of the

constants j and B are generally unknown. j and B depend

on the Reynolds number, the pressure gradient of the flow

and other parameters. For flows along smooth walls and

zero pressure gradient, typical values are j = 0.41 and

B = 5.1. In this case, us becomes 0.248 m/s and the wall-

shear stress 0.076 N/m2. Here, the estimation of j and

B from the logarithmic region of the velocity profile results

in different values when using a fit-function, see Fig. 12, as

qp/qx is not exactly zero. To avoid the uncertainty of this

Clauser approach in general, a higher magnification is

necessary to directly resolve the wall-shear stress accord-

ing to Eqs. (1) and (2).

4.2 Long-range microscopic DPIV

In order to resolve the wall-normal gradient within the

viscous sublayer, the magnification was increased using a

long-distance microscope system (K2 by Infinity). The

light sheet thickness and the working distance were again

500 lm and 1 m, respectively. The magnification was set

to M & 2.2 resulting in particle images with a size of

D � 8. . .10 px. Due to the high magnification, the seeding
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concentration is rather sparse. The density of particle

images, in terms of illuminated area, was less than 3 %. At

this seeding density, a huge number of image pairs would

be required for single-pixel ensemble-correlation. Addi-

tionally, the large particle images limit the resolution to[6

pixel, according to Kähler et al. (2012), which corresponds

to 25 lm. On the other hand, PTV evaluation seems to be

well suited for this kind of data, since the resolution is not

limited by the particle images size and the low density

allows for reliable detection and tracking of the particle

images.

A total number of 13,000 double frame images were

processed with a PTV algorithm, resulting in about 335,000

valid vectors. The velocity vectors were then averaged in

the stream-wise direction (over 2.1 mm) with a slot width

of 20 lm in the wall-normal direction. This results in a

dynamic spatial range of DSR = 750 independent velocity

vectors. The resulting profile is shown in Figs. 13 and 14.

In contrast to the synthetic images, where no particle

images were located below the wall, mirrored images from

above are present in this experiment and result in a mir-

rored velocity profile. However, these data points are easy

to exclude from the fit, and they can even be used to

determine the position of the wall reliably (Kähler et al.

2006). The resolution in the wall-normal direction is y? &
0.33 wall units and can be further increased using more

images.

In order to estimate the mean flow gradient o�u=oy at the

wall, a linear fit-function was used, whereas at first, the

wall position was determined from the symmetry plane of

the near-wall profile and the mirrored profile, and secondly,

the gradient was estimated using five neighboring

measurement points. Figure 15 shows the resulting gradi-

ent with respect to the wall distance of the center point (the

third out of five). The error bar indicates the 95 % confi-

dence interval of the fit parameters. A maximum gradient

of qu/qy = (4,709 ± 101) s-1 was found at a wall distance

of y & 0.17 mm. The profile becomes less steep further

away from the wall, whereas closer to the wall, the gradient

is smaller again and shows a large random error indicated

by the error bar in Fig. 15. A lower limit of the friction

velocity can be determined from the maximum gradient:

us [ (0.256 ± 0.005) m/s. This agrees very well with the

Clauser method, which results in the same value

us = 0.256 m/s for j = 0.43 and B = 5.7 based on the

logarithmic region in Fig. 14. However, the difference

compared to the results obtained with the single-pixel
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method in Fig. 12 is obvious and illustrates the need to

estimate us directly with high precession nicely.

Figure 14 shows the velocity profile in normalized

coordinates, where the usual normalization was used, that

is yþ ¼ y � us=m and uþ ¼ �u=us with the kinematic viscos-

ity m. The logarithmic region, 30 B y? B 200, was

approximated by an exponential equation shown in Fig. 14.

The von Kármán parameters, j and B, served as dependent

variables. The estimated values are in agreement with the

range presented in the literature (Zanoun et al. 2003).

4.3 Microscopic DPIV

In order to validate the different evaluation methods for

microscopic flow applications, an experiment in a straight

micro channel was performed. The channel was made from

elastomeric polydimethylsiloxane (PDMS) on a 0.6-mm-

thick glass plate with a cross-section of 514 9 205.5 lm2.

A constant flow rate was generated by pushing distilled

water through the channel using a high-precision neME-

SYS syringe pump (Cetoni GmbH). The flow in the

channel was homogeneously seeded with polystyrene latex

particles with a diameter of 2 lm (Microparticles GmbH).

The particle material was pre-mixed with a fluorescent dye

and the surface was later PEG modified to make them

hydrophilic. Agglomeration of particles at the channel

walls can be avoided by this procedure, allowing for long-

duration measurements without cleaning the channels or

clogging.

For the illumination, a two-cavity frequency-doubled

Nd:YAG laser system was used. The laser was coupled

with an inverted microscope (Zeiss Axio Observer) by an

optical fiber. The image recording was performed with a

20x magnification ojective (Zeiss LD Plan-Neofluar,

NA = 0.4) using a 12-bit, 1,376 9 1,040 px, interline

transfer CCD camera (PCO Sensicam QE) in double-

exposure mode. With the relay lens in front of the camera,

the total magnification of the system was M = 12.6. The

time delay between the two successive frames was set to

Dt ¼ 100 ls. 8,000 image pairs were recorded at a depth

of z = 93 lm with an intermediate seeding concentration

of 5� 10�5 in-focus particles per pixel, which corre-

sponds to 0.4 % of the sensor area covered by particle

images or approximately 70 particles per frame. The mean

in-focus digital particle image diameter was around

10 px.

Figure 16 shows the theoretical Poiseuille flow profile

together with the estimated one using single-pixel ensem-

ble-correlation as well as PTV. Since window-correlation

was already proven to be erroneous due to the large aver-

aging region, it is not considered here. To compare both

methods, the PTV data were averaged using a wall-normal

spatial binning size of 1 px. Using this binning size, 45

particle pairs contribute on average to a single point in

Fig. 16. However, close to the wall, the seeding is sparse

and only several particle pairs were found. Nevertheless,

the number of particle image pairs already reaches 40 at

y & 5 lm away from the wall. Although the profile for the

single-pixel ensemble-correlation is sampled on each pixel,

the real spatial resolution is given by the minimum distance

between independent vectors, which is [7 px for

D = 10 px according to Kähler et al. (2012). Thus, the

spatial resolution is around 3.5 lm for single-pixel

ensemble-correlation and approximately 0.5 lm for PTV.

The corresponding values for the dynamic spatial range are

DSRSP & 150 and DSRPTV & 1,030 independent velocity

vectors in the wall-normal direction.

Due to the large difference in spatial resolution, the

aforementioned bias errors for the single-pixel ensemble-

correlation can be seen on the profiles close to the wall as

discussed in Sect. 3.2. As a result of the relatively large

digital particle image diameter, the wall-parallel velocity at

the wall is slightly overestimated as shown in the upper

part of Fig. 17.

In the lower part of Fig. 17, the bias error for the wall-

normal component, caused by the nonuniform seeding

concentration at the wall, can be seen. An artificial velocity

component toward the channel center is observed in case of

single-pixel ensemble-correlation. It should be emphasized

that the apparent motion of the seeding particles toward the

channel’s center is a pure systematic error of the evaluation

approach, according to Fig. 5, and not a result of the

Saffman effect (Saffmann 1965), which describes a lift

force of spherical particles in a shear flow. This is evident

from the PTV analysis that does not show any motion away

from the wall.
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The theoretical flow profile in a rectangular channel is

given by a series expansion of trigonometric functions

(Bruus 2008). To estimate the wall gradient, the profiles

were fitted by a sixth-order polynomial resulting in a wall-

shear stress of sw = 0.0131 ± 0.0002 N/m2 for single-

pixel ensemble-correlation and sw = 0.0147 ± 0.0002 N/m2

for particle tracking, while the theoretical value is

sw = 0.0158 ± 0.0001 N/m2, where the uncertainty is

estimated from the 95 % confidence level of the fit

parameters. However, the paper in hand enables to judge,

to which distance the values close to the wall are biased.

Using only the data points in the range of 8 lm \ y \
506 lm results in sw = 0.0143 ± 0.0001 N/m2 for the

single-pixel ensemble-correlation. From the difference

between the experimental and theoretical results, it cannot

be concluded that the measurements are biased. More

likely, the theoretical fitting is erroneous as the real channel

geometry may differ from the assumed one. The same

holds for the flow rate. For such a simple geometry, where

the biased region can be properly determined, the estima-

tion of the wall-shear stress using both methods works

quite well. For more complex geometries or when a distinct

wall-normal velocity is present, this is not the case.

Since the whole channel is illuminated in micro fluidics,

out-of-focus particles also contribute to the correlation and

bias the velocity estimate (Olsen and Adrian 2000; Rossi

et al. 2011). If a normalized correlation is used, this bias is

larger due to the sparse seeding, for details we refer to

Cierpka and Kähler (2012). Since in-focus particles show

higher intensity values, they contribute much more to the

correlation peak in single-pixel evaluation and the bias due

to the depth of correlation is decreased. However, the

velocity is still underestimated as can be seen in Fig. 16.

For the PTV evaluation, the particle image size was eval-

uated as well and the velocity estimation was performed

later using only in-focus particles. As can be seen in

Fig. 16, the velocity profile is closer to the theoretical one.

5 Summary

The measurement of mean quantities such as velocity

profiles or Reynolds stresses is of paramount importance

for the verification of theories, the validation of numerical

flow simulations and the analysis of complex flows. In

order to correctly measure mean quantities, the spatial

resolution, dynamic spatial range and uncertainty of a

measurement technique is of major relevance. In Kähler

et al. (2012), it was shown that the spatial resolution of

window-correlation, single-pixel ensemble-correlation and

PTV approaches is limited by the following:

• interrogation window dimension WY (window-correla-

tion analysis)

• particle image diameter D (single-pixel ensemble-

correlation)

• uncertainty in the estimation of the particle image

position rPTV (PTV).

In Figs. 6 and 7 of this paper, it is shown that the

measurement uncertainty of PTV can be below 0.01pixel

for low seeding densities. This is a result of the high signal-

to-noise ratios, which can be easily achieved experimen-

tally, and the relative large digital particle image diameters

(3 px \ D \ 15 px) that allow for a precise detection of

the intensity maximum. In addition, the noise of the digital

camera is uncorrelated from pixel to pixel. On the other

hand, a SNR [ 5 is difficult to achieve for window-cor-

relation analysis (if 6–8 particle images are considered for

the correlation). Furthermore, the noise induced by the

correlation of nonpaired particle images is correlated over a

distance *D. This enhances the random errors as the

interference of the signal peak with a noise peak is likely to

happen.

As a consequence of these findings, the dynamic spatial

range (DSR), which indicates the bandwidth or the range of

scales that can be resolved on average (assuming a camera

sensor with 4,000 pixel in one direction), is

• &250 for window-correlation with 16 9 16 pixel

interrogation windows,

• &2,000 for single-pixel ensemble-correlation with 2–3

pixel particle image diameters and
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• [25,000 for PTV in case of low seeding densities and

high signal-to-noise ratios.

To evaluate the uncertainty of mean quantities, a

detailed analysis was performed. In the case of homoge-

neous seeding distribution and constant flow gradients, it is

shown that the bias errors caused by the gradient are

averaged out and window-correlation, single-pixel ensem-

ble-correlation and PTV show identical results far away

from walls (Fig. 9).

Close to walls, a bias error appears even under the same

conditions (homogeneous seeding, constant flow gradient)

which is given by:

• dDX�wall ¼ WY=4 � o �DX�=oY� at the wall (Y� = 0) and

decreases to zero at Y� = WY/2 (window-correlation),

• dDX�wall ¼ D=ð4 �
ffiffiffi

p
p
Þ � o �DX�=oY� at the wall (Y� = 0)

and decreases to zero at Y� = D/2 (single-pixel

ensemble-correlation) and

• dDX�wall � rPTV for Y�\ rPTV (PTV, see first point in

Fig. 10).

As rPTV 	 D=ð4
ffiffiffi

p
p
Þ 	 Wy=4; it can be concluded that the

nearest unbiased measurement point for window-correlation

can be increased by an order of magnitude using single-pixel

ensemble-correlation, and more than an extra order of magni-

tude can be achieved using PTV image analysis techniques.

Furthermore, it can be concluded that PTV image analysis

techniques should always be used in the case of inhomoge-

neous seeding and/or nonconstant flow gradients since corre-

lation-based methods are always biased under these conditions.

This implies that the instantaneous estimation of the

particle image displacement from a single image pair,

calculated using window-correlation techniques, is always

biased in the case of flow gradients (even for constant ones)

since the particle image distribution cannot be homoge-

neous for a small number of randomly distributed particle

images. In effect, the averaging of window-correlation

results obtained from a set of image pairs leads to a larger

uncertainty compared to the single-pixel ensemble-corre-

lation analysis. This happens because the bias error due to

the inhomogeneous particle image distribution appears as

an increased random error on average.

For this reason, it can be concluded that the single-pixel

ensemble-correlation should be used instead of window-

correlation approaches for the estimation of averaged flow

quantities at high seeding densities. However, since the

particle images further away from the wall broaden the

correlation peak only on the side facing away from the wall

(see Fig. 3), DY� is also biased for Y�\ D/2 in the case of

single-pixel ensemble-correlation. Therefore, PTV should

always be used near walls. This is usually possible as the

particle image density decreases toward walls down to an

acceptable level for an accurate PTV analysis.

Due to the high precision of the PTV evaluation tech-

nique in flows with strong gradients and inhomogeneous

seeding, this approach can be even more accurate than

LDV for the following reasons:

• Although the velocity estimation with LDV is usually

more precise than particle imaging techniques, the

localization of the measurement volume in physical space

is seldom better than a fraction of a millimeter [or around

60 lm for sophisticated approaches under ideal condi-

tions (Czarske 2000)], while in PTV, it is only a few

micrometers or even less for high-magnification imaging.

• In the case of flows with gradients, this position error

causes significant bias errors for LDV or other

measurement probes, similar to that present in the

window-correlation results shown in Fig. 9.

• Uncertainties raising from mechanical translation sta-

tions or thermal elongation do not need to be consid-

ered for PTV, while they must for LDV or other probes

that are traversed to measure a profile.

• Errors due to model or equipment vibrations can be

completely accounted for in case of particle imaging

techniques, while for LDV and other probes, this

becomes difficult. In effect, the spatial resolution is

further reduced using these single-point techniques.

In summary, the analysis shows that all the evaluation

techniques considered in this article have their specific

strengths. Therefore, a hierarchical evaluation concept that puts

together the benefits of all techniques is desirable to achieve the

best possible results. Unfortunately, PTV requires low particle

image densities, while window-correlation and single-pixel

ensemble-correlation perform best for high seeding concen-

trations, as this leads to small interrogation windows or mod-

erate number of image pairs for the single-pixel ensemble-

correlation. For this reason, the development of PTV image

analysis techniques with low uncertainty at high particle image

densities is necessary.

Acknowledgments Financial support from German Research

Foundation (DFG) in the framework of the Collaborative Research

Centre—Transregio 40 and the Individual Grants Programme KA

1808/8 is gratefully acknowledged by the authors. The authors also

would like to thank Rodrigo Segura for technical language revisions.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

References

Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution

of particle image velocimetry. Meas Sci Tech 8:1393. doi:

10.1088/0957-0233/8/12/003

1654 Exp Fluids (2012) 52:1641–1656

123

http://dx.doi.org/10.1088/0957-0233/8/12/003


Adrian RJ, Westerweel J (2010) Particle image velocimetry. Cam-

bridge University Press, Cambridge
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