354 research outputs found

    The Chemtrak Hp Chek Fingerstick Whole Blood Serology Test for the Detection of Helicobacter pylori Infection

    Full text link
    To evaluate a new whole blood serology test (Hp Chek; ChemTrak) that detects IgG antibodies to Helicobacter pylori . Methods : The study was conducted at 10 sites within the United States. Patients undergoing upper endoscopy for dyspepsia were recruited for enrollment. Those treated for H. pylori infection within a year of endoscopy and those who had regularly used proton pump inhibitors, bismuth compounds, or antibiotics within a month of endoscopy were not eligible. During endoscopy, specimens were obtained from the corpus and antrum for histological examination, which was performed by a single experienced pathologist. The Hp Chek was tested using whole blood and serum. Serum was also tested with a reference enzyme-linked immunosorbent assay (ELISA) at a centralized location. Test characteristics for the Hp Chek and ELISA were calculated using histology as the “gold standard.”. Results : Two hundred eighty-seven patients (140 women and 147 men; mean age 53 ± 6 yr ) were enrolled. The Hp Chek was easy to perform and yielded results 9 min after inoculation of the test cassette with whole blood or serum. When the Hp Chek used with whole blood was compared with histology as the gold standard, the sensitivity was 88%, specificity 85%, positive predictive value 83%, negative predictive value 90%, and percent agreement 86%. There were no statistically significant differences among the results obtained with the Hp Chek using whole blood, the Hp Chek using serum, or reference ELISA. Conclusions : The Hp Chek whole blood serology test was easy to perform and rapid and yielded performance characteristics comparable to those of a reference ELISA or the Hp Chek used with serum.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75251/1/j.1572-0241.1998.016_c.x.pd

    Entanglement Entropy of 3-d Conformal Gauge Theories with Many Flavors

    Get PDF
    Three-dimensional conformal field theories (CFTs) of deconfined gauge fields coupled to gapless flavors of fermionic and bosonic matter describe quantum critical points of condensed matter systems in two spatial dimensions. An important characteristic of these CFTs is the finite part of the entanglement entropy across a circle. The negative of this quantity is equal to the finite part of the free energy of the Euclidean CFT on the three-sphere, and it has been proposed to satisfy the so called F-theorem, which states that it decreases under RG flow and is stationary at RG fixed points. We calculate the three-sphere free energy of non-supersymmetric gauge theory with a large number N_F of bosonic and/or fermionic flavors to the first subleading order in 1/N_F. We also calculate the exact free energies of the analogous chiral and non-chiral {\cal N} = 2 supersymmetric theories using localization, and find agreement with the 1/N_F expansion. We analyze some RG flows of supersymmetric theories, providing further evidence for the F-theorem.Comment: 31 pages, 2 figures; v2 refs added, minor change

    Determinant and Weyl anomaly of Dirac operator: a holographic derivation

    Get PDF
    We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background, and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte

    Entanglement Entropy from a Holographic Viewpoint

    Get PDF
    The entanglement entropy has been historically studied by many authors in order to obtain quantum mechanical interpretations of the gravitational entropy. The discovery of AdS/CFT correspondence leads to the idea of holographic entanglement entropy, which is a clear solution to this important problem in gravity. In this article, we would like to give a quick survey of recent progresses on the holographic entanglement entropy. We focus on its gravitational aspects, so that it is comprehensible to those who are familiar with general relativity and basics of quantum field theory.Comment: Latex, 30 pages, invited review for Classical and Quantum Gravity, minor correction

    The search for low-mass axion dark matter with ABRACADABRA-10cm

    Get PDF
    Two of the most pressing questions in physics are the microscopic nature of the dark matter that comprises 84% of the mass in the universe and the absence of a neutron electric dipole moment. These questions would be resolved by the existence of a hypothetical particle known as the quantum chromodynamics (QCD) axion. In this work, we probe the hypothesis that axions constitute dark matter, using the ABRACADABRA-10cm experiment in a broadband configuration, with world-leading sensitivity. We find no significant evidence for axions, and we present 95% upper limits on the axion-photon coupling down to the world-leading level gaγγ<3.2×1011g_{a\gamma\gamma}<3.2 \times10^{-11} GeV1^{-1}, representing one of the most sensitive searches for axions in the 0.41 - 8.27 neV mass range. Our work paves a direct path for future experiments capable of confirming or excluding the hypothesis that dark matter is a QCD axion in the mass range motivated by String Theory and Grand Unified Theories.Comment: 17 pages, 12 figure

    Towards the F-Theorem: N=2 Field Theories on the Three-Sphere

    Full text link
    For 3-dimensional field theories with {\cal N}=2 supersymmetry the Euclidean path integrals on the three-sphere can be calculated using the method of localization; they reduce to certain matrix integrals that depend on the R-charges of the matter fields. We solve a number of such large N matrix models and calculate the free energy F as a function of the trial R-charges consistent with the marginality of the superpotential. In all our {\cal N}=2 superconformal examples, the local maximization of F yields answers that scale as N^{3/2} and agree with the dual M-theory backgrounds AdS_4 x Y, where Y are 7-dimensional Sasaki-Einstein spaces. We also find in toric examples that local F-maximization is equivalent to the minimization of the volume of Y over the space of Sasakian metrics, a procedure also referred to as Z-minimization. Moreover, we find that the functions F and Z are related for any trial R-charges. In the models we study F is positive and decreases along RG flows. We therefore propose the "F-theorem" that we hope applies to all 3-d field theories: the finite part of the free energy on the three-sphere decreases along RG trajectories and is stationary at RG fixed points. We also show that in an infinite class of Chern-Simons-matter gauge theories where the Chern-Simons levels do not sum to zero, the free energy grows as N^{5/3} at large N. This non-trivial scaling matches that of the free energy of the gravity duals in type IIA string theory with Romans mass.Comment: 66 pages, 10 figures; v2: refs. added, minor improvement

    Design and Implementation of the ABRACADABRA-10 cm Axion Dark Matter Search

    Get PDF
    The past few years have seen a renewed interest in the search for light particle dark matter. ABRACADABRA is a new experimental program to search for axion dark matter over a broad range of masses, 1012ma10610^{-12}\lesssim m_a\lesssim10^{-6} eV. ABRACADABRA-10 cm is a small-scale prototype for a future detector that could be sensitive to QCD axion couplings. In this paper, we present the details of the design, construction, and data analysis for the first axion dark matter search with the ABRACADABRA-10 cm detector. We include a detailed discussion of the statistical techniques used to extract the limit from the first result with an emphasis on creating a robust statistical footing for interpreting those limits.Comment: 12 pages, 8 figure

    Explosive instability due to 4-wave mixing

    Full text link
    It is known that an explosive instability can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. The purpose of this paper is to show that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing: four resonantly interacting wavetrains gain energy from a background, and all blow up in a finite time. Unlike singularities associated with self-focussing, these singularities can occur with no spatial structure - the waves blow up everywhere in space, simultaneously
    corecore