3 research outputs found

    Particle filtering in compartmental projection models

    Get PDF
    Simulation models are important tools for real-time forecasting of pandemics. Models help health decision makers examine interventions and secure strong guidance when anticipating outbreak evolution. However, models usually diverge from the real observations. Stochastics involved in pandemic systems, such as changes in human contact patterns play a substantial role in disease transmissions and are not usually captured in traditional dynamic models. In addition, models of emerging diseases face the challenge of limited epidemiological knowledge about the natural history of disease. Even when the information about natural history is available -- for example for endemic seasonal diseases -- transmission models are often simplified and are involved with omissions. Availability of data streams can provide a view of early days of a pandemic, but fail to predict how the pandemic will evolve. Recent developments of computational statistics algorithms such as Sequential Monte Carlo and Markov Chain Monte Carlo, provide the possibility of creating models based on historical data as well as re-grounding models based on ongoing data observations. The objective of this thesis is to combine particle filtering -- a Sequential Monte Carlo algorithm -- with system dynamics models of pandemics. We developed particle filtering models that can recurrently be re-grounded as new observations become available. To this end, we also examined the effectiveness of this arrangement which is subject to specifics of the configuration (e.g., frequency of data sampling). While clinically-diagnosed cases are valuable incoming data stream during an outbreak, new generation of geo-spatially specific data sources, such as search volumes can work as a complementary data resource to clinical data. As another contribution, we used particle filtering in a model which can be re-grounded based on both clinical and search volume data. Our results indicate that the particle filtering in combination with compartmental models provides accurate projection systems for the estimation of model states and also model parameters (particularly compared to traditional calibration methodologies and in the context of emerging communicable diseases). The results also suggest that more frequent sampling from clinical data improves predictive accuracy outstandingly. The results also present that assumptions to make regarding the parameters associated with the particle filtering itself and changes in contact rate were robust across adequacy of empirical data since the beginning of the outbreak and inter-observation interval. The results also support the use of data from Google search API along with clinical data

    'Turning the tide' on hyperglycemia in pregnancy : insights from multiscale dynamic simulation modeling

    Get PDF
    INTRODUCTION: Hyperglycemia in pregnancy (HIP, including gestational diabetes and pre-existing type 1 and type 2 diabetes) is increasing, with associated risks to the health of women and their babies. Strategies to manage and prevent this condition are contested. Dynamic simulation models (DSM) can test policy and program scenarios before implementation in the real world. This paper reports the development and use of an advanced DSM exploring the impact of maternal weight status interventions on incidence of HIP. METHODS: A consortium of experts collaboratively developed a hybrid DSM of HIP, comprising system dynamics, agent-based and discrete event model components. The structure and parameterization drew on a range of evidence and data sources. Scenarios comparing population-level and targeted prevention interventions were simulated from 2018 to identify the intervention combination that would deliver the greatest impact. RESULTS: Population interventions promoting weight loss in early adulthood were found to be effective, reducing the population incidence of HIP by 17.3% by 2030 (baseline ('business as usual' scenario)=16.1%, 95% CI 15.8 to 16.4; population intervention=13.3%, 95% CI 13.0 to 13.6), more than targeted prepregnancy (5.2% reduction; incidence=15.3%, 95% CI 15.0 to 15.6) and interpregnancy (4.2% reduction; incidence=15.5%, 95% CI 15.2 to 15.8) interventions. Combining targeted interventions for high-risk groups with population interventions promoting healthy weight was most effective in reducing HIP incidence (28.8% reduction by 2030; incidence=11.5, 95% CI 11.2 to 11.8). Scenarios exploring the effect of childhood weight status on entry to adulthood demonstrated significant impact in the selected outcome measure for glycemic regulation, insulin sensitivity in the short term and HIP in the long term. DISCUSSION: Population-level weight reduction interventions will be necessary to 'turn the tide' on HIP. Weight reduction interventions targeting high-risk individuals, while beneficial for those individuals, did not significantly impact forecasted HIP incidence rates. The importance of maintaining interventions promoting healthy weight in childhood was demonstrated

    Predictive accuracy of particle filtering in dynamic models supporting outbreak projections

    No full text
    Abstract Background While a new generation of computational statistics algorithms and availability of data streams raises the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and representation of behaviour change), and there has been little attempt to identify effective configurations. Methods Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly formulated models regrounded automatically and recurrently as new data becomes available. Given a latent underlying case count, we assumed that observed incident case counts followed a negative binomial distribution. In accordance with the condensation algorithm, each such observation led to updating of particle weights. We evaluated the effectiveness of various particle filtering configurations against each other and against an approach without particle filtering according to the accuracy of the model in predicting future prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effectiveness of particle filtering under varying times between observations, negative binomial dispersion parameters, and rates with which the contact rate could evolve. Results We observed that more frequent observations of empirical data yielded super-linearly improved accuracy in model predictions. We further found that for the data studied here, the most favourable assumptions to make regarding the parameters associated with the negative binomial distribution and changes in contact rate were robust across observation frequency and the observation point in the outbreak. Conclusion Combining dynamic models with particle filtering can perform well in projecting future evolution of an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than paid back by improved planning capacity. The robustness of the results on particle filter configuration in this case study suggests that it may be possible to formulate effective standard guidelines and regularized approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution for emerging infectious diseases by combining even very rough models with particle filtering method
    corecore