
BMJ Open Diab Res Care 2020;8:e000975. doi:10.1136/bmjdrc-2019-000975

Open access�

1

Open access�

‘Turning the tide’ on hyperglycemia in 
pregnancy: insights from multiscale 
dynamic simulation modeling

Louise Freebairn  ‍ ‍ ,1,2,3 Jo-an Atkinson  ‍ ‍ ,1,4 Yang Qin,5 
Christopher J Nolan  ‍ ‍ ,6,7 Alison L Kent,7,8 Paul M Kelly,3,7 Luke Penza,9 
Ante Prodan  ‍ ‍ ,9 Anahita Safarishahrbijari,5 Weicheng Qian,5 
Louise Maple-Brown,10,11 Roland Dyck,12 Allen McLean  ‍ ‍ ,5 Geoff McDonnell,1 
Nathaniel D Osgood,5 Diabetes in Pregnancy Modelling Consortium

For numbered affiliations see 
end of article.

Correspondence to
Dr Louise Freebairn;  
​louise.​freebairn@​act.​gov.​au

To cite: Freebairn L, Atkinson J, 
Qin Y, et al. ‘Turning the tide’ on 
hyperglycemia in pregnancy: 
insights from multiscale 
dynamic simulation modeling. 
BMJ Open Diab Res Care 
2020;8:e000975. doi:10.1136/
bmjdrc-2019-000975

►► Additional material is 
published online only. To view 
please visit the journal online 
(http://​dx.​doi.​org/​10.​1136/​
bmjdrc-​2019-​000975).

Received 16 October 2019
Revised 15 February 2020
Accepted 6 April 2020

Original research

Epidemiology/Health Services Research

© Author(s) (or their 
employer(s)) 2020. Re-use 
permitted under CC BY. 
Published by BMJ.

Abstract
Introduction  Hyperglycemia in pregnancy (HIP, 
including gestational diabetes and pre-existing type 1 
and type 2 diabetes) is increasing, with associated risks 
to the health of women and their babies. Strategies 
to manage and prevent this condition are contested. 
Dynamic simulation models (DSM) can test policy and 
program scenarios before implementation in the real 
world. This paper reports the development and use of an 
advanced DSM exploring the impact of maternal weight 
status interventions on incidence of HIP.
Methods  A consortium of experts collaboratively 
developed a hybrid DSM of HIP, comprising system 
dynamics, agent-based and discrete event model 
components. The structure and parameterization drew 
on a range of evidence and data sources. Scenarios 
comparing population-level and targeted prevention 
interventions were simulated from 2018 to identify the 
intervention combination that would deliver the greatest 
impact.
Results  Population interventions promoting weight loss 
in early adulthood were found to be effective, reducing 
the population incidence of HIP by 17.3% by 2030 
(baseline (‘business as usual’ scenario)=16.1%, 95% CI 
15.8 to 16.4; population intervention=13.3%, 95% CI 
13.0 to 13.6), more than targeted prepregnancy (5.2% 
reduction; incidence=15.3%, 95% CI 15.0 to 15.6) and 
interpregnancy (4.2% reduction; incidence=15.5%, 
95% CI 15.2 to 15.8) interventions. Combining targeted 
interventions for high-risk groups with population 
interventions promoting healthy weight was most 
effective in reducing HIP incidence (28.8% reduction by 
2030; incidence=11.5, 95% CI 11.2 to 11.8). Scenarios 
exploring the effect of childhood weight status on entry 
to adulthood demonstrated significant impact in the 
selected outcome measure for glycemic regulation, 
insulin sensitivity in the short term and HIP in the long 
term.
Discussion  Population-level weight reduction 
interventions will be necessary to ‘turn the tide’ on 
HIP. Weight reduction interventions targeting high-risk 
individuals, while beneficial for those individuals, did 
not significantly impact forecasted HIP incidence rates. 
The importance of maintaining interventions promoting 
healthy weight in childhood was demonstrated.

Introduction
Hyperglycemia in pregnancy (HIP), inclu-
sive of gestational diabetes and type 1 and 

Significance of this study

What is already known about this subject?
►► The rising prevalence of hyperglycemia in pregnancy 
(HIP) is having a significant impact on health ser-
vice demand and resources, yet the strategies for 
screening, diagnosing, preventing and managing HIP 
remain contested.

►► Exploration of effective decision support tools is 
needed to guide evidence-informed policy and pro-
grams for this complex problem.

What are the new findings?
►► The unique tripartite structure of this dynamic sim-
ulation model allows representation of the problem 
and synthesis of evidence at multiple integrated 
levels of abstraction, including biological, individual-
level behavioral and health service dynamics.

►► The tested scenarios highlighted the importance 
of public health interventions to maintain healthy 
weight status in childhood and support women to 
achieve healthy weight prior to pregnancy.

How might these results change the focus of 
research or clinical practice?

►► Population health interventions will be necessary to 
stabilize and reduce HIP.

►► Interventions targeting high-risk individuals can be 
beneficial to these individuals however, they deliv-
ered small reductions in overall population incidence 
rates.

►► DSMs mature as new evidence becomes available 
and methods are advanced to facilitate further 
development.

►► A key priority for future research is improved knowl-
edge about the dynamics and heterogeneity in the 
etiology of glycemic dysregulation and diabetes 
mellitus development, and the impact of glycemic 
control during pregnancy on perinatal outcomes.
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Box 1  Study context

►► The model explored hyperglycemia in pregnancy (HIP) in the 
Australian Capital Territory (ACT) and was built in partnership with 
the ACT Government Health Directorate (ACT Health). Approximately 
16% of ACT resident women who gave birth in the ACT in 2016 were 
diagnosed with HIP (increasing from 6% in 2008).48 ACT Health pro-
vides government-funded health services for the population of the 
ACT (approximately 410 000) and is the major health referral cen-
ter for the Greater Southern Region of New South Wales. The total 
catchment area population is over 600 000 people. The number of 
women giving birth in the ACT is over 6000 per year. Approximately 
15% of these women are non-ACT residents who access services 
in the ACT for high-risk pregnancy complications (ie, those requiring 
tertiary level care). Models of antenatal maternity care provided in 
the ACT include hospital-based outpatient care, private midwifery 
care, shared care (ie, integrated with primary healthcare provid-
ers) and tertiary level multidisciplinary care. DIP services include a 
gestational diabetes education program at two sites (hospital and 
community health center) and a hospital-based, high-risk diabetes 
in pregnancy multidisciplinary clinic for women with pre-existing 
type 1 and 2 diabetes and step-up care for women with gestational 
diabetes requiring insulin or with other complex care needs.

type 2 diabetes diagnosed before or during pregnancy, is 
increasing both in Australia and internationally,1–4 chal-
lenging the capacity of healthcare services. The increase 
in HIP is directly associated with the increasing preva-
lence of risk factors including overweight, obesity, older 
maternal age and shifts in population demographics and 
ethnicities.2 3 5 With increasing prevalence of risk factors, 
service providers report that women are more frequently 
presenting with more complex diabetes and obstetric 
care needs.6 Additionally, diabetes during pregnancy 
increases the risk for later cardiometabolic disease for 
the woman3 and early onset of overweight, obesity and 
type 2 diabetes for her children.2 7

The available evidence for HIP policy and treatment 
planning is not definitive,1 and current challenges include 
determining the timing and methods of screening, criteria 
for diagnosis, targets for treatment, resource allocation, 
identification and management of pre-existing diabetes 
during pregnancy, risk stratification, timing and type of 
prevention activities, and individual differential effects 
of treatment.1 8–10 To address the increasing incidence 
of HIP, there have been increasing calls for upstream 
prevention activities to focus on lifestyle risk factors 
preconception rather than during or interpregnancy.11–13 
These contested intervention options cross the spectrum 
from population-based primary prevention approaches 
to highly specialized clinical management targeted at 
those at highest risk, which can be implemented inde-
pendently or in combination and may be phased or 
implemented simultaneously. Sophisticated analytical 
tools are required to synthesize diverse evidence types 
across disciplines and support decision making.

Systems science methods provide decision makers 
with insights into how multiple causal pathways interact 
to generate the patterns of disease we see in the real 
world and how interventions modify those path-
ways.14 15 Dynamic simulation modeling (DSM) is a 
method to re-create complex systems and human behav-
iors as a computational mathematical model. This model 
can answer ‘what if’ questions, via computer simulation, 
about the likely impacts over time of different policy and 
intervention options and their combinations.16 17 This 
is important for prevention policy and practice, where 
decision support tools must steer a course through the 
complexity of interactions that give rise to real-world 
public health problems, such as the rapid increase in 
HIP.16–18 They are also useful for conditions with slow and 
variable development, like diabetes mellitus, that involves 
interaction between genetic predisposition and environ-
mental factors that impact on the underlying dynamics of 
physiological factors involved in glucose regulation, such 
as weight status, insulin sensitivity, insulin secretion and 
intercurrent pregnancy.19–21 These physiological variables 
interact, most often in non-linear ways, and some are 
difficult to measure empirically, meaning that conditions 
like diabetes present significant challenges for traditional 
experimental methods.19 22 Analytical methods like DSM 
play an important role in improving understanding of the 

dynamics of disease progression.19 23 24 The multiscale, 
hybrid DSM reported in this paper builds on current 
understanding of glycemic regulation dynamics related 
to weight status and pregnancy,20 21 leveraging existing 
peer-reviewed mathematical models of diabetes,19 23 24 
and explores the dynamics of glycemic regulation, weight 
status and pregnancy on the development of HIP.25

Recent advances in modeling software have increased 
model transparency, making them more accessible to non-
modelers. This has facilitated expert stakeholder partic-
ipation in the model development process, increasing 
the opportunities for interdisciplinary learning about 
complex health problems and building trust in the model 
outputs.26–30 The aim of this study was to develop an HIP 
decision support tool for policy and program decision 
makers in the Australian Capital Territory (Box 1), using 
participatory DSM.31 The model development process 
and discussions of the model outputs enable key stake-
holders to explore the likely impacts of both clinical and 
population-level intervention options for HIP, via simu-
lation, before they are implemented in the real world. 
The process has been reported elsewhere.26 30–32 The 
aim of this paper is to explore the impact of prevention 
interventions targeting weight status on HIP incidence 
and insulin sensitivity. Insulin sensitivity, while not being 
a commonly used clinical measure, was selected as an 
outcome measure of glycemic regulation for these simu-
lated scenarios as it reflects metabolic dynamics both 
during pregnancy and with changing weight status and is 
potentially responsive to lifestyle interventions.20 21 Inter-
vention scenarios were compared with a baseline ‘busi-
ness as usual’ scenario to explore the impact of timing, 
subgroup targeting, and adherence to lifestyle changes 
on the incidence of HIP and insulin sensitivity.
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What did we do?
We brought together diabetes in pregnancy experts including leading 
academics, policy makers and clinicians from across Australia. Their insights 
were combined with research and data to develop a dynamic simulation model 
of diabetes in pregnancy in the ACT.  

“With the collaborative modelling approach, the people in the room have 
accumulated knowledge and expertise in the area over many years. To have that 
wealth and depth of knowledge involved is incredibly valuable.”   
Professor Christoper Nolan, Director of Endocrinology and Diabetes, ACT Health 

A dynamic simulation model is a sophisticated computer ‘what if’ tool that can 
test the likely impact of a range of possible solutions over time. It considers the 
short, intermediate, and long-term implications of the increasing prevalence of 
risk factors for diabetes in pregnancy and looks at alternative models of care.

Based on real data, the model can be used to test out different solutions to 
see which will be most effective and cost effective. The expert group identified, 
clarified and prioritised gaps in current knowledge and evidence which can be 
used to guide future research and, in turn, further improve the model.

Gestational diabetes,  
increases the subsequent  
risk of type 2 diabetes in 
mothers almost ten fold. 

 

Babies of mothers who 
have gestational diabetes 

are at short-term risk 
of high birthweight, 

birth complications and 
hypoglycaemia. 

 
Children of mothers who had 

gestational diabetes have 
a 2–4 fold increased risk of 

being overweight/obese and 
having long-term impaired 

glucose tolerance. 

Both gestational diabetes  
and type 2 diabetes are 

associated with modifiable 
lifestyle risk factors such as 
diet and physical activity. 

There are also strong  
genetic and family related  

risk factors which are  
not modifiable.

2   THE AUSTRALIAN PREVENTION PARTNERSHIP CENTRE

Switch on different intervention combinations. For example:

Run ‘what if’ scenarios through the model

Compare predicted impact over time

Facilitate discussion to help drive policy action

A. Pre-pregnancy intervention 
to lose weight  

B. Family–centered programs  
to reduce weight  
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Figure 1  Overview of the participatory model development process.

Methods
Model development
The model development process drew on best-practice 
guidelines for computational modeling and included the 
grounding of assumptions in theory and evidence, sensi-
tivity testing and calibration.33 34 The model was built 
using a participatory approach that engaged a consortium 
of academics, clinicians, public health policy makers, 
program planners, modelers and health economists. This 
approach has been described in detail elsewhere,26 31 32 
and a diagrammatical overview of the process is depicted 
in figure 1.

The hybrid model was constructed using AnyLogic 
simulation software (http://www.​anylogic.​com/). 
Detailed information is available in the online supple-
mentary resource.

Model inputs and data sources
The structure and parameterization of the model drew on 
a range of data sources, including census and population 
data, systematic reviews, meta-analyses, accepted formulas 
and conceptual models, survey data, policy/program 
effectiveness data, economic data and the expert knowl-
edge of the multidisciplinary stakeholders who partici-
pated in model development. Local data were prioritized 
where these were available. Expert opinion was used 
when other evidence options were exhausted or for trian-
gulation of multiple data sources when parameters were 
uncertain. The data included statistics relating to demo-
graphic characteristics and trends, the incidence of HIP 
and associated risk factors, and the underlying physiology 
determining individual glycemic control including beta 
cell mass and function based on previous mathematical 
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Individual characteristics

Internal dynamics of glucose regulation

Weight status

Pregnancy status

Diabetes status

Diabetes/glycemia status

Clinical services

Individual characteristics Internal dynamics of glucose regulation

Weight status

Pregnancy status

Diabetes/glycemia status

Clinical services

Figure 2  Overview of model components and structure. DIP, Diabetes in Pregnancy; GDM, Gestational Diabetes Mellitus; 
IGR, Impaired Glucose Regulation; IGT, Impaired Glucose Tolerance; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabetes 
mellitus.

models of diabetes progression.19 23 24 Census, population 
and health system data were sourced from the Australian 
Bureau of Statistics and ACT Health administrative data 
collections. Model input parameter values, their sources 
and the data used for model calibration are provided in 
the online supplementary resource. The model popula-
tion is initialized using demographic characteristics, for 
example, age and country of birth, of the female popula-
tion of the Australian Capital Territory (ACT) from the 
2011 Australian Census.35 The model is calibrated to the 
incidence of HIP in ACT Health maternal and perinatal 
statistics from 2008 to 2016,25 and the model time unit is 
years.

Model structure
The tripartite model incorporates system dynamics (SD), 
agent-based modeling (ABM) and discrete event simula-
tion (DES) components with construction and analysis 
implemented in AnyLogic V.8.3.3 Professional (http://
www.​anylogic.​com/). SD is a method for understanding 
the relationships between elements in a system and how 
the behavior of the system changes36–39 using feedback 
loops (the circular causality in the system), stocks (accu-
mulations/quantities) and flows (rates of change). ABM 
simulates the actions and interactions of agents (agents 

are people in this model) to assess their impacts on the 
system as a whole.40 This method is useful for capturing 
heterogeneity in risk and in impacts of interventions 
and capturing social network influences. DES methods 
analyze processes and optimization of resource alloca-
tion for service delivery (eg, patient flows through an 
emergency department).37

Underlying the model structure, described here and 
elsewhere,25 are equations and values (parameters) that 
quantify the relationships defined by the model logic. 
These are described in detail in the online supplemen-
tary resource.

The overall model structure is shown in figure  2. In 
summary, the model incorporates characteristics that 
impact on an individual’s glycemic regulation, including 
age, individual/family history of diabetes and parity (top 
left); weight status (center left); and pregnancy status 
(bottom left). These are represented using agent-based 
modeling constructs. Glycemic regulation (top right) 
is represented using SD methods and increases and 
decreases dynamically. It is impacted by internal physi-
ological factors such as increased metabolic load due to 
pregnancy, and external behavioral factors such as diet, 
physical activity and adherence to medication. Diagnosis 
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of HIP (bottom center) leads to clinical service provi-
sion (bottom right). Clinical services are represented 
using DES. Figure 2 is intended to provide a high-level 
overview of model components to facilitate conceptual 
understanding of the structure rather than depicting 
full details. Key components of the model structure are 
described conceptually in the following paragraphs, and 
the underlying computational methods are described in 
the online supplementary resource.

An individual’s risk of developing HIP or progressing 
on to permanent diabetes relates to the presence or 
absence (categorical) or level of (continuous) factors 
known to influence glycemia regulation and is based 
on previous mathematical models of diabetes progres-
sion.19 23 24 It is a function of two main groups of factors 
in the model. First, it is a function of biological regula-
tory capacity, that is, the changes in insulin sensitivity 
and insulin production associated with underlying phys-
iology, including in response to the increased metabolic 
load of pregnancy.19 21 23 24 Second, there is a compo-
nent of external regulation by the individual, that is, 
their conscious regulation through adherence to blood 
testing, medication regimens and lifestyle interventions 
including diet and physical activity. The model mecha-
nism allows for changes in an individual’s adherence to 
medical and lifestyle interventions over time.

The model also incorporates the impact of beta cell 
decline associated with exposure to dysglycemia based 
on modeling carried out by De Gaetano et al.19 23 24 Expo-
sure to dysglycemia results in a decline of beta cell func-
tion over time, and this eventually limits the individual’s 
regulatory capacity. Reduced beta cell function decreases 
the effectiveness of lifestyle interventions in glucose regu-
lation, meaning that even if an individual with reduced 
beta cell function makes significant changes to their diet 
and activity levels the impact on blood glucose regulation 
will be restricted.

Pregnancy occurs according to the ACT age and 
ethnicity specific fertility rates. The model tracks rele-
vant risk factor information for the occurrence of dysgly-
cemia in the current pregnancy, for example, body mass 
index (BMI), age, history of diabetes, and family history 
of diabetes. Insulin sensitivity decreases significantly 
during pregnancy for both normoglycemic and dysgly-
cemic women, based on findings of studies by Catalano 
et al,20 21 41 and such changes can impart physiological 
impact for the mother and the child (eg, on beta cell mass 
and function) that persists beyond that pregnancy. When 
a woman gives birth, there is a birth event in which a baby 
is introduced into the model. The baby inherits informa-
tion on maternal characteristics, including the mother’s 
HIP status and history of diabetes, maternal weight status 
and ethnicity. Outcomes, including birth weight, type 
of birth, for example, cesarean section, neonatal inten-
sive care admission, and shoulder dystocia, are recorded 
at birth. Consistent with the focus on HIP, the model 
includes only female agents. Births for male babies occur 
in the model; however, these agents are deleted from the 

population. Model outputs reflect the impact of interven-
tions on women in the population.

High weight status is an important risk factor for 
declining insulin sensitivity and the development 
of diabetes. Weight is represented in the model as a 
continuous variable that changes dynamically with age42 
and pregnancy.43 An individual’s weight status (BMI) 
impacts on their insulin sensitivity,19–21 with increasing 
weight leading to decreasing insulin sensitivity. This 
paper reports on weight reduction intervention 
scenarios tested in the model as described in the next 
section.

Simplifying assumptions about individual behavior 
was made to ensure the model is parsimonious, while 
allowing it to approximate real-world behavior over time. 
A summary of the key assumptions is presented in the 
following:

►► Age-specific fertility rates were calculated using birth 
rates from 2013. The model assumes that age-specific 
fertility rates will remain stable over the period of the 
simulation.

►► The model assumes that 60% of pregnancies were 
intended, providing opportunities for intervention 
during pregnancy planning.11 The assumption was 
applied uniformly across age groups.

►► Adherence to healthy lifestyle behaviors was assumed 
to increase after exposure to intervention and then 
decline over the subsequent 2 years.

►► Individuals who were eligible had an equal chance of 
receiving interventions.

Underlying the model structure and assumptions 
described are simple mathematical relationships 
designed to capture the concept they represent. For 
instance, the decline in intervention adherence was 
assumed to follow a curve whose coefficients cause adher-
ence to the weight management intervention to increase 
immediately following an intervention and decline over 
the subsequent 2-year period.

Health services are captured in the model, with the 
current service model in the ACT being represented as 
a DES component. Future planned work for the model 
will explore the impact of alternative service models on 
resources and outcomes.

Scenarios tested in this analysis
The scenarios tested in this analysis focused on the 
impact of targeted and population-level weight reduction 
strategies and compared them with a ‘business as usual’ 
baseline scenario that assumed that existing services and 
programs would continue and that no additional inter-
ventions would be implemented. Many of the risk factors 
for HIP are not modifiable; however, weight status (over-
weight and obesity) is an important modifiable risk factor 
for both HIP and type 2 diabetes mellitus. The scenarios 
prioritized for this analysis are described in the following 
sections.
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Table 1  Scenario descriptions

Scenario Description

Population intervention
This intervention targets all women aged 20–35 years through a public health intervention. The goal 
of the intervention is to support women to maintain or achieve a healthier weight status.

Targeted prepregnancy 
intervention

This intervention targets women who have one or more risk factor for HIP. It is available to all 
women who are considering pregnancy (60% of pregnancies11). The intervention aims to achieve a 
healthy weight via adherence to diet and physical activity recommendations.

Targeted interpregnancy
This interpregnancy intervention targets women who have had diabetes in a previous pregnancy. 
The intervention aims to increase adherence to diet and physical activity recommendations and to 
achieve a healthy weight before the next pregnancy.

Combined This scenario combines all the above interventions.

HIP, hyperglycemia in pregnancy.

Impact of population versus targeted weight management 
interventions
These scenarios compared the impact of weight manage-
ment interventions delivered across the population of 
women aged 20–35 years with targeted interventions deliv-
ered to women who were at high risk according to the 
Australian Diabetes in Pregnancy criteria,1 either before or 
after their pregnancies. The interventions are described in 
table 1 and are simulated from 2018 in the scenarios.

The effectiveness of each intervention in reducing 
weight is a model parameter that can be varied. For 
simplicity, the interventions in these scenario runs were 
assumed to result in weight reductions that had a trun-
cated normal distribution, with a mean BMI reduction of 
1.3 kg/m2 (min=0, max=6.4, SD=1.7 kg/m2). The distri-
bution was based on an Australian study of mobile phone-
based public health intervention aimed at preventing 
weight gain in young adults44 and an Australian study 
of interpregnancy lifestyle change supported by motiva-
tional interviewing.45 Weight loss results for individuals 
who received the interventions were drawn from this 
distribution. It was assumed that all eligible individuals 
received the intervention and that the intervention effec-
tiveness degraded over time, with adherence diminishing 
over a 2-year period.

Impact of childhood weight interventions
These interventions explored the impact of childhood 
weight interventions. As childhood weight dynamics 
had not yet been fully articulated in the model, these 
hypothetical scenarios were simulated by modifying 
the weight distribution of the population on entry to 
adulthood. Increasing population-wide interventions to 
reduce childhood overweight and obesity was simulated 
by shifting the weight distribution of the population to 
the ‘left’, so that more individuals entered adulthood 
within the healthy weight range (truncated normal distri-
bution with mean BMI=22). Scaling back population-
wide interventions addressing childhood overweight and 
obesity was also simulated. The scaling back intervention 
shifted the population weight distribution to the ‘right’, 
so that more individuals entered adulthood either over-
weight or obese (truncated normal distribution with 

mean BMI=30). The interventions were implemented 
for individuals born from 2018, and the simulations were 
run for 42 additional years (2060) to allow individuals to 
age and enter their reproductive years.

Model outputs and data analysis
For the scenario testing, key outcome indicators against 
which the impacts of intervention scenarios were compared 
with the baseline ‘business as usual’ scenario were (1) 
incidence of HIP (%) and (2) insulin sensitivity (KxgI). 
Incidence of diabetes in pregnancy was calculated as a 
percentage based on the proportion of all women giving 
birth in each year who were diagnosed with HIP. KxgI was 
used as a mathematical index of insulin sensitivity repre-
senting insulin-dependent glucose tissue uptake.23

To estimate latent or poorly measured parameters 
and to support the projection of status quo future inci-
dence of HIP using model outputs, we calibrated the 
baseline model without additional interventions against 
the following historical data: the incidence of HIP for 
subpopulations in ACT from 2008 to 2016 according to 
the Australian Diabetes in Pregnancy Society (ADIPS) 
risk profiles1; and the prevalence of macrosomia by HIP 
status in the ACT from 2010 to 2016.25

Outputs from the model were summarized using the 
R statistical package to obtain means, SEs and 95% CIs; 
summary data were tabulated and graphed in Microsoft 
Excel. Given that runs of the model were computationally 
expensive, 36 runs were deemed sufficient to account for 
stochasticity and provide stable predictions of scenario 
performance and of the variance in performance. The 
comparison of simulation results between baseline and 
intervention scenarios was expressed as a per cent differ-
ence in reported outcomes, with 95% CIs provided to 
describe the variation between simulation runs and to 
test statistical significance.

Results
Results for scenario testing for interventions with simu-
lated implementation from 2018 are presented in the 
following sections.
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Table 2  Summary HIP incidence statistics for baseline and scenarios simulated from 2018 to 2040

2020 2030 2040

%
95% CI 
(±)

% 
reduction 
from 
baseline %

95% CI 
(±)

% 
reduction 
from 
baseline %

95% CI 
(±)

% 
reduction 
from 
baseline

Baseline 15.9 0.4 – 16.1 0.3 – 17.3 0.4 –

1. Population intervention 15.5 0.4 −3.0 13.3* 0.3 −17.6 13.8* 0.3 −20.5

2. Targeted prepregnancy 15.5 0.3 −2.8 15.3* 0.3 −5.2 16.2* 0.4 −6.2

3. Targeted interpregnancy 
reduction

15.6 0.3 −2.1 15.5* 0.3 −4.2 16.7* 0.4 −3.8

4. Combined population and 
targeted prepregnancy and 
interpregnancy

13.6 0.4 −14.4 11.5* 0.3 −28.8 11.8* 0.3 −32.1

*Significantly different from baseline at p<0.05.
HIP, hyperglycemia in pregnancy.

Figure 3  Comparative impact of scenarios on HIP incidence simulated from 2018 to 2040. Dotted lines indicate 95% CI for 
estimated incidence. HIP, hyperglycemia in pregnancy.

Scenario testing results
Impact of population versus targeted weight management 
interventions
The incidence of HIP for the scenario simulations is 
presented as a percentage, based on the proportion of 
all women giving birth in each year who were diagnosed 
with HIP, in table 2. The incidence of HIP in the base-
line scenario was 15.9% (95% CI 15.5 to 16.3) in 2020, 
16.1% (95% CI 15.8 to 16.4) in 2030 and 17.3% (95% CI 
16.9 to 17.7) in 2040. The population weight loss inter-
vention in early adulthood resulted in a 3.0% reduction 
in HIP incidence by 2020 to 15.5% (95% CI 15.1 to 15.9), 
which falls within the margin of error of the baseline; 
however, by 2030 there was a 17.6% reduction against 
the baseline with an HIP incidence of 13.3% (95% CI 

13.0 to 13.6) (figure  3). In comparison, the impact of 
targeted prepregnancy and interpregnancy interventions 
on population-level HIP incidence ranged from a non-
significant reduction of just over 2% in 2020, to a small 
but statistically significant reduction of 4%–5% in 2030 
and 4%–6% in 2040, respectively. Incidence rates with CIs 
for these scenarios are presented in table 2. Combining 
targeted interventions for high-risk groups with popu-
lation weight loss interventions was the most effective 
scenario for reducing HIP incidence, with a reduction of 
14.4% by 2020 to 13.6% (95% CI 13.2 to 14.0), 2 years 
after the simulated interventions were implemented, 
28.8% by 2030 (HIP incidence=11.5%, 95% CI 11.2 to 
11.8) and 32.1% by 2040 (HIP incidence=11.8%, 95% CI 
11.5 to 12.1).
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Impact of childhood weight status on entry to adulthood
The interventions were implemented for female agents 
born from 2018 and were simulated to 2060 to allow time 
for individuals to age into adulthood and their repro-
ductive years. Two scenarios were simulated: scenario 
A—shifting the BMI distribution of the population to 
healthy weight with all individuals entering adulthood 
at a healthy weight; and scenario B—shifting the weight 
distribution for the population further toward overweight 
and obesity as they entered adulthood. Minimal impact 
of the interventions was observed on HIP incidence 
until 2060, when scenario A resulted in a 21.2% decrease 
in the percentage of women diagnosed with HIP from 
baseline (table 3) (2060 baseline HIP incidence=17.0%, 
95% CI 16.7 to 17.3; scenario A HIP incidence=13.4%, 
95% CI 13.1 to 13.7; scenario B HIP incidence=17.6%, 
95% CI 17.3 to 17.9).

Changes in insulin sensitivity (KxgI) were observed 
earlier in the simulation, from 2030, for the simulated 
BMI interventions (table  3). Scenario A resulted in 
increased insulin sensitivity, as measured by KxgI, for 
the population by 8.5% from the baseline simulation by 
2030 (baseline KxgI=48.4, 95% CI 48.2 to 48.6; scenario 
A KxgI=52.5, 95% CI 52.3 to 52.7), increasing to 47.3% by 
2060 (baseline KxgI=45.6, 95% CI 45.4 to 45.8; scenario A 
KxgI=67.1, 95% CI 66.7 to 67.5). Scenario B resulted in a 
decrease in insulin sensitivity for the population of 31% 
from baseline by 2060 (scenario B KxgI=31.5, 95% CI 
31.3 to 31.7).

Discussion
The simulations reported here prioritized scenario testing 
of several lifestyle prevention interventions promoting 
healthy weight status. Population-level interventions 
promoting weight loss in early adulthood were found 
to be more effective than targeted prepregnancy and 
interpregnancy interventions in reducing the popula-
tion incidence of HIP. Combining targeted interventions 
for high-risk groups with population health promotion 
support was shown to be the most effective scenario for 
reducing HIP incidence, especially in the longer term. 
Scaling up childhood healthy weight interventions, 
resulting in all female children entering adulthood at a 
healthy weight, achieved a significant improvement in 
insulin sensitivity in the short term and decreased HIP 
in the long term. Scenarios testing the impact of scaling 
back childhood healthy weight interventions, that is, 
having more children entering adulthood overweight or 
obese, resulted in declines in insulin sensitivity across the 
population and therefore increasing risk of early devel-
opment of diabetes mellitus.

The study presented in this paper is unique in that 
DSM was used to explore the latent factors and meta-
bolic dynamics underlying the development of HIP and 
compare the likely impact of population-level inter-
ventions with interventions targeting high-risk individ-
uals. This simulation study builds on previous research 

assessing the effectiveness of targeted lifestyle preven-
tion programs to prevent HIP incidence.11 13 46 Given the 
substantial time needed to achieve weight reduction, it 
has been argued that early intervention at a population 
level will be necessary to reduce obesity-related outcomes 
in pregnancy,11 and this was supported by the modeling. 
The scenarios presented in this paper demonstrated that 
population-level interventions will be needed to make an 
impact on HIP incidence across the population. Targeted 
interventions, both prepregnancy and interpregnancy, 
did not substantially impact on population HIP incidence.

Over half of pregnancies are planned,11 and this was 
reflected in the model, with only individuals who were 
planning to become pregnant being eligible to receive 
the targeted preconception intervention. Therefore, 
the small proportion of the total population receiving 
the intervention and individual variations in adherence, 
included in the model to reflect reality, impacted on 
intervention effectiveness. The targeted interventions 
resulted in only a modest impact on population inci-
dence rates for HIP. This result should not devalue the 
role of targeted interventions, as these are important and 
beneficial for individuals and their offspring.12 However, 
the results emphasize the need for population interven-
tions to support healthy lifestyle behaviors for all individ-
uals, whether they actively plan their pregnancy or not.11

A recent review of research into antenatal lifestyle 
programs for high-risk women found that they did not 
successfully prevent HIP.13 Further examination of the 
individual and intervention characteristics that facilitated 
adoption and adherence to interventions has been identi-
fied as a priority.13 The HIP model presented here incor-
porated representations of the non-linear dynamics and 
feedback loops that impact intervention effectiveness, for 
example, the impact of age and pregnancy-related weight 
changes across the life course and the impact of indi-
vidual adherence to diet and physical activity recommen-
dations on both HIP incidence and insulin sensitivity. 
The reduction in HIP incidence was only achieved when 
individuals remained adherent to the lifestyle changes 
associated with the intervention.

Scenario testing provides an important tool for 
exploring hypothetical policy options, including ‘do 
nothing’ alternatives that forecast the impact of ceasing 
current interventions.15 33 47 In these simulated scenarios, 
the HIP model hypothetically tested the impact of scaling 
back interventions promoting healthy weight for children 
in school settings. This scenario forecasted the impact of 
more children entering adulthood at a higher weight 
status on insulin sensitivity, placing them at risk of early 
development of diabetes mellitus. These results signify 
the potential importance of the current global focus and 
efforts to reduce childhood overweight and obesity.

Diverse local perspectives and interests can provide 
decision makers with conflicting advice regarding the 
best course of action.17 Data limitations, insufficient 
local analytical capacity and inadequate tools to support 
longer term planning in the context of changing local 
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needs contribute to the persistence of a trial and error 
approach to program planning that may delay or prevent 
the realization of significant impacts on important public 
health issues like HIP.16 47 The DSM approach described 
in the present study is one way to address these challenges 
and can also contribute to prioritizing data gaps for 
future research and data collection, and infrastructure 
to better support interventions to prevent and manage 
HIP. The participatory approach facilitated opportuni-
ties for interdisciplinary dialogue and combining diverse 
perspectives in the consideration of policy options. The 
developed partnerships and relationships were critical to 
the model development and to its likely subsequent use 
to inform health service and policy decisions.

Future applications of the model include further explo-
ration of the intergenerational impacts resulting from 
exposure to HIP; effect of glycemic dysregulation on 
pregnancy outcomes; impact of lifestyle (diet and phys-
ical) interventions during pregnancy on glycemic control 
and pregnancy outcomes; factors that influence child-
hood weight gain, for example, breast feeding and other 
aspects of diet, school-based health promotion interven-
tions, physical activity and so on; impact of model of care 
alternatives; and impact of prevention interventions on 
health service utilization. Health economic consider-
ations will also be added to future iterations of the model.

Limitations
There are limitations to consider when interpreting the 
findings of this paper. There is potential measurement bias 
in the range of secondary data used to parameterize the 
model. Where possible, routinely collected local health 
service information was obtained to estimate population-
based estimates of HIP, birth outcomes, weight status, and 
fertility rates. There were also some parameters relating 
to the heterogeneity of etiology of HIP and the dynamics 
of glycemic regulation where data were not available, and 
these are identified as priorities for future research. The 
model acknowledges these potential sources of measure-
ment bias, and commonly used strategies were employed 
to address them, including the triangulation of multiple 
data sources, calibration to refine parameter estimates 
and the engagement of stakeholders with detailed knowl-
edge of the limitations and likely direction and size of 
potential measurement biases in key data sources. In 
addition, sensitivity analysis was undertaken to estimate 
the impact of uncertainty on primary outcome indicators 
and guide priorities for new data collection and quality 
improvement of existing data collection.

Conclusion
Population health interventions will be necessary to ‘turn 
the tide’ on HIP. Interventions targeting high-risk indi-
viduals, while beneficial for those individuals, delivered 
small reductions in HIP incidence rates. The importance 
of maintaining interventions promoting healthy weight 
in childhood was demonstrated. Scenarios simulating the 

impact of scaling back these interventions showed that 
insulin sensitivity decreased significantly, increasing the 
risk for early development of diabetes mellitus. DSMs are 
learning support tools that can mature over time as new 
evidence becomes available and methods are advanced 
to facilitate further development. This decision support 
tool for HIP was developed as a working model and is 
being published for transparency and to invite input. A 
key priority for future research is improved knowledge 
about the dynamics and heterogeneity in the etiology of 
glycemic dysregulation and diabetes mellitus develop-
ment, and the impact of glycemic control during preg-
nancy on perinatal outcomes.
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