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Abstract

Simulation models are important tools for real-time forecasting of pandemics. Models help health decision

makers examine interventions and secure strong guidance when anticipating outbreak evolution. However,

models usually diverge from the real observations. Stochastics involved in pandemic systems, such as changes

in human contact patterns play a substantial role in disease transmissions and are not usually captured in

traditional dynamic models. In addition, models of emerging diseases face the challenge of limited epidemi-

ological knowledge about the natural history of disease. Even when the information about natural history

is available – for example for endemic seasonal diseases – transmission models are often simplified and are

involved with omissions. Availability of data streams can provide a view of early days of a pandemic, but

fail to predict how the pandemic will evolve. Recent developments of computational statistics algorithms

such as Sequential Monte Carlo and Markov Chain Monte Carlo, provide the possibility of creating models

based on historical data as well as re-grounding models based on ongoing data observations. The objective

of this thesis is to combine particle filtering – a Sequential Monte Carlo algorithm – with system dynamics

models of pandemics. We developed particle filtering models that can recurrently be re-grounded as new

observations become available. To this end, we also examined the effectiveness of this arrangement which is

subject to specifics of the configuration (e.g., frequency of data sampling). While clinically-diagnosed cases

are valuable incoming data stream during an outbreak, new generation of geo-spatially specific data sources,

such as search volumes can work as a complementary data resource to clinical data. As another contribution,

we used particle filtering in a model which can be re-grounded based on both clinical and search volume data.

Our results indicate that the particle filtering in combination with compartmental models provides accurate

projection systems for the estimation of model states and also model parameters (particularly compared to

traditional calibration methodologies and in the context of emerging communicable diseases). The results

also suggest that more frequent sampling from clinical data improves predictive accuracy outstandingly. The

results also present that assumptions to make regarding the parameters associated with the particle filtering

itself and changes in contact rate were robust across adequacy of empirical data since the beginning of the

outbreak and inter-observation interval. The results also support the use of data from Google search API

along with clinical data.
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Chapter 1

Introduction

Infectious diseases are one of the leading cause of death in the world. While many of the old infections

are with us still, new infections also continue to emerge today and are a dominant feature of public health

considerations. A lot of public health resources and researches are committed to modeling the spread of

infectious disease based on mathematical theories and also presenting some illustrative applications of these

models to improve early epidemiological assessment of epidemics.

A large variety of studies have been conducted to understand and describe the dynamics of influenza-like

diseases such as H1N1 influenza. Models provide public health professionals and policy-makers with tools to

examine tradeoffs between alternative strategies for clinical resource management and possible interventions.

For example, dynamic models help with prioritizing vaccination initiatives and addressing effectiveness of

interventions such as social distancing measures, including school closure and suspension of public activities.

Inevitably, dynamic models are simplifications of real systems and are make use of parameter values that

are either uncertain or themselves evolving stochastically over time. Stochastic transitions associated with

societal and economic behaviours along with the lack of information about the natural history of diseases

make it hard to anticipate the progression of outbreaks, particularly fast-breaking ones or those involving

emerging infectious diseases. For example, in infection transmission models, it can be challenging to obtain

estimates for parameters such as contact patterns, fraction of total incident cases that are reported, and

initial values of model states. While calibration of dynamic models can help with short-term projection

of pandemics, they often fail to accurately predict incidence rates across longer time-frames. Calibration

accuracy depends heavily on the size of available historical data and calibration methods thus offer limited

benefit for early prediction of outbreaks. They also lack the capability to adapt based on the latest and

new-arrived data points, reflecting the fact that re-calibration typically requires substantial manual effort.

This adaptation to new data is of critical importance when learning about new diseases. The calibration

approaches support estimation of parameters, but not model states. While parameter values may be updated

to the best estimate, the model’s estimate of state often increasingly diverge over time from real-world state.

Within this thesis, we use a statistical filtering method in the form of particle filtering to overcome short-

comings of the traditional calibration methodology. Particle filtering is used to run particles simultaneously

offering different hypotheses concerning the entirety of underlying model state. A likelihood test is performed

to identify the particles that best match with the observed measurements based on survival of the fittest.
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While empirical data may be limited to matching small pieces of the model, particle filtering allows for esti-

mating (via sampling) the full extent of the state of the model, whether latent or observed. Because accurate

understanding of the latent state is a fundamental enabler for accurate assessment of intervention tradeoffs,

not only does particle filtering enhance predictive accuracy, but it also supports elevated understanding the

current situation (via latent state estimation) and provides the capacity to accurately assess intervention

tradeoffs. It bears emphasis that each particle estimates the full state of the model, including all latent

variables.

To evaluate the effectiveness of particle filtering, we examined a case study based on the second peak of

pandemic H1N1 in the province of Manitoba during 2009-2010. For one investigation, we also considered the

second peak of H1N1 in Quebec during 2009-2010.

Since reporting of clinically confirmed cases is subject to significant inaccuracy, we further sought to

investigate trade-offs between employing less frequent but more stable data sampling and more frequent but

noisy measurements. We also explored the validity of the particle filter to assumptions underlying the method

and also about the behavioural change in population.

Clinically-observed data offer rich information concerning individuals who seek medical treatments, but

fail to catch information about those who do not present for medical care. A large portion of population –

either infected or not infected, but anxious about a pandemic – might use search engines to obtain information

about vaccination, treatments and news about the pandemic. Google Trends and specifically Google Flu

Trends (GFT) provide data about search data trends and search volumes [2, 3]. Although there are some

criticisms on GFT algorithms [4], several studies have been conducted regarding classifying and analyzing

search data, finding correlation between clinical datasets and search query volumes and also examining

the capability of search data for pandemic predictions via statistical methods. To our knowledge, none

of the studies have investigated the ability of aggregate compartmental or System Dynamics models to be

recurrently re-grounded using both search query data and clinical data. Reflecting this opportunity, in the

final investigation of this thesis, we investigated the possibility of using search volumes along with clinical

data during a pandemic for projection of pandemic progress.

1.1 Motivation

Despite much progress on the public health front, the burden of communicable diseases remains globally

high. Of particular importance in a world where human development increasingly encroaches upon natural

ecosystems are emerging disease, which are diseases that are new, or has been detected in a new region or with

manifestations that differ from what was previously recognized. Emerging infectious diseases or pathogens

exert high burdens in the public health area. The large avian influenza (A) H7N7 outbreak in the Netherlands

in 2003, the global severe acute respiratory syndrome (SARS) outbreak in 2003, Marburg virus importation

in 2008, pandemic influenza A (H1N1) during the 2009-2010 influenza season and other avian influenza virus

2



outbreaks when the influenza (A) H5N1 viruses started to spread from China, Ebola virus disease, Middle

East respiratory syndrome (MERS) and Zika are some examples of recent emerging pandemics. Figure 1.1

demonstrates the cumulative confirmed cases of H1N1 for different countries during 2009 pandemic. It shows

that the total cases of H1N1 reaches to more than 65,000 at the end of pandemic.

Figure 1.1: Cumulative H1N1 cases in the 2009 pandamic (The image is taken from [1]).

In addition to the costs associated with vaccination and hospitalization, according to a national survey in

Canada, high levels of absenteeism amongst critical infrastructure workers during a pandemic influenza out-

break would create a substantial and immediate negative influence on the economy. Guy Holburn, Associate

Professor at the University of Western Ontario’s Richard Ivey School of Business, estimates that absenteeism

amongst workers during an influenza pandemic could cost (via absenteeism) the Canadian economy $9 billion

[5].

In addition to financial burdens, key challenges to control of an outbreak of an emerging disease include

how fast such events can develop, the difficulty of working with an unknown disease, the challenge of ensuring a

coordinated response between general population and public health experts, public health resource constraints

and manpower requirements.

Mathematical modelling plays an increasingly important role in helping to guide policy-makers to over-

come these challenges. Modelling studies are increasingly performed to address questions about the effec-

3



tiveness of interventions. Modelling may also be useful in the context of prioritizing and planning clinical

trials. Finally, mathematical modelling can be used in economic evaluations of clinical and public health

interventions and in assessing long-term outcomes.

Observational data can be used to evaluate a public health policy after it is underway, but have little value

in helping to project the future impact of a proposed program. Furthermore, when an emerging outbreak

occurs, it is often required to respond to new threats, for which there is limited or no previous data on which

to assess the threat.

Computational and mathematical models can aid assessment of potential impacts early in the process.

Models can also help in interpreting data from complex systems; however, there are a number of challenges

in achieving a successful model.

Model projections depend on underlying assumptions and model parameters. Problematic assumptions

can lead to flawed public health policies [6]. Models of the time-course of infection, in particular, make

use of parameters which are central to predicting infection trajectories for individuals, thereby movement

between population categories [7]. If the underlying assumptions and model parameters are poorly defined,

subsequent modelling can be conjectural. This issue is particularly challenging in emerging infections, where

there is a shortage of observations regarding the time-course of disease [8].

The unknown natural history and pathogenesis of diseases affected by previous interventions (e.g., via

selective pressures) or other changes to the system can also significantly challenge the model predictions.

Identifying approaches to improve the value of model predictions despite model inaccuracies and high-

lighting predictions that are close to real-world observations can help overcome the challenge of unknown

history and parameters involved in models. The development of such methods can be possible by updating

and checking model assumptions as more data becomes available. Such methods have the potential to create

models that can be used in ongoing planning.

Combining dynamic models of pandemics with new generations of computational statistics algorithms

makes it feasible to reformulate models as new observations become available. These algorithms can also

help in estimating unknown parameters and latent state of the model, and thus help with more accurate

prediction of future outcomes based on current observations.

1.2 Problem

To investigate whether joining mathematical transmission models for influenza and empirical data can im-

prove the accuracy of model predictions of incident case counts.

To resolve this problem, there are a number of technical problems that need to be addressed in order to

create reliable simulations models:

1. Pandemic simulation models are commonly involved with unknown or little-known parameter values,

such as contacts per day and fraction of incident cases reported, and vaguely known aspects of the
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natural history of the diseases; e.g., parameters associated with initial values of recovered and suscep-

tible states. At the same time, there is often medium- to large-amounts of data that relates not to

specific parameter values isolation, but which instead describes the emergent behaviour of the system or

subsystems. Traditionally, many modelers employ calibration methodologies to estimate the unknown

parameters and tune models in the presence of such emergent empirical data. However, such approaches

are not flexible in evolving the parameter values over time or estimating the latent state of the model

state variables. Therefore, other techniques should be examined to leverage the presence of empirical

data and help models to reground model state estimates as new data becomes available.

2. Although combining computational statistics algorithms such as particle filtering with incoming obser-

vations provides the possibility of regrounding dynamic models with empirical data, the effectiveness

of such algorithms is prone to be affected by configurations such as frequency of sampling from data

and representation of parameter change.

3. Traditional empirical data such as clinically-confirmed case reports can provide valuable information

about infected population who seek medical care; however, such traditional data is burdened by some

shortcomings, including delays in reporting infected cases and a failure to capture infected individuals

who do not present for clinical services.

1.3 Solution

In this section, we briefly describe our solutions to the problems mentioned above. Each problem is addressed

in this section briefly, and then with complete details and results in the following chapters.

1. Several studies used specified formulation by public health officials to identify the unknown parameters

of pandemic models [9, 10]. Traditionally, transmission modeling is used to unravel epidemic develop-

ment in the area of infectious diseases. Some studies account for the effect of behavioural changes on

disease transmission [11, 12, 13]. Such previous models, to deal with parameters that change over the

course of a pandemic, considered the parameters to be static, either not taking advantage of empirical

data for estimating unknown parameter values at all or by using traditional calibration methodologies,

which are not reliable means of keeping current with the latest in empirical data. It would be more

desirable to allow those parameters to be adapted dynamically as new data points are available during

a pandemic. To address this problem, we used particle filtering methodology to enable the model to

learn from ongoing real-world data in a dynamic fashion in order to estimate model state evolution as

well as stochastics associated with selected model parameters. We further investigated whether parti-

cle filtering is more capable than calibration in estimating the uncertain parameters and in predicting

model elements associated with data from real-world outbreaks.

2. To overcome the second problem, we formulated a set of scenarios to explore how changes to particle
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filter configurations and also empirical data would affect the error associated with particle filtered

model predictions. Specifically, we investigated the choice of the values of the dispersion parameter

associated with the negative binomial likelihood formulation, the contact rate volatility parameter, the

total period for which empirical observations were available so that the model could learn from them,

and the frequency of aggregation associated with empirical data observations provided to the model.

Choices of such values are especially important for health decision makers to obtain robust guidance

when anticipating outbreak evolution for emerging infectious diseases by combining preliminary models

with particle filtering techniques.

3. Taking advantage of the increasing tendency of many individuals to post and tweet about their illnesses

and to use search engines such as Google to obtain information about diseases and their treatments, we

evaluated the gains secured from the use of an online source of data to complement clinical datasets.

Time series of volumes of Google searches over time can be used to explore the presence of influenza-

like illnesses in the population that are not necessarily included in the empirical records provided

by clinics. We used search query volumes previously provided by Google Trends and Google Flu

Trends. To address this task, we adapted the compartmental model developed by Epstein et al., which

explored the effect of behavior changes such as social distancing based on fear in epidemic dynamics

[14]. We combined particle filtering with this adapted model to help model learn from both clinical

and search volume datasets. This approach exploited the fact that the large volume of data available

from communicational activities of the population can offer early information to the model regarding

disease activity. This can help policy makers respond quickly to reduce the impact of pandemic and

seasonal influenza like diseases.

1.4 Contributions

The main contributions of this thesis are as follows:

1. Investigating the performance of particle filtering in predicting pandemic influenza using

empirical data. We used empirical data obtained from Manitoba Health, Healthy Living and Seniors,

which indicated weekly confirmed cases and vaccine delivery rates of pandemic H1N1 in 2009-2010.

We further compared the accuracy of particle filtering to that obtained via calibration methodology in

terms of their ability to project pandemics in a compartmental model with stochastic parameters.

2. Implementation of different scenarios to obtain an optimum range for configuration pa-

rameters, the sampling period and observation frequency. To explore the pattern of change in

contact rate over the period of an outbreak, and how it affects the spread of infection, we performed

particle filtering examining different values for the contact rate volatility parameter over a broad range.

The performance of particle filtering to projected infected case counts is also sensitive to the type
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of likelihood function, and specifically in our work to the dispersion parameter associated with the

negative binomial distribution. Retaining the mean value to be constant, lower values for dispersion

parameter elevate the dispersion associated with the likelihood function. We examined how different

values of dispersion parameter affect particle filtering performance. The noise in the clinically observed

data is often pronounced. Aggregating data over a longer period – more than one day – between ob-

servations reduces the proportional size of the noise associated with such data; however, aggregation

yields fewer data points, and hence particle filtering learns from fewer observations. To investigate the

trade-off between employing more aggregated but less noisy data when compared to less aggregated but

more noisy data, we examined different inter-observation aggregation intervals. With an original data

source supplying daily data, we examined the effects of using data daily, aggregated over three days

and aggregated over seven days for the purpose of sampling in particle filtering. A common scenario

anticipated for application of particle filtering would be one in which the procedure is used throughout

an outbreak. At any one time, particle filtering can only take into account data observed from the

start of the outbreak until that timepoint (a timepoint which we denoted as T ∗). We examined the

performance of particle filtering for different data points in which particle filtering would be able to

re-sample and learn from empirical data. We considered T ∗ equivalent to predictions made at 5, 6, 7

and 8 weeks into the outbreak.

3. Examining the performance of a particle filtered compartmental model in prediction of

pandemics progression using search volumes during an outbreak. We implemented particle

filtering using two different datasets and examined whether combining dataset that moves beyond purely

a clinically observed dataset to also includes a time series of search volumes can enhance prediction of

pandemic progression, which can help with earlier warning, and hence earlier prevention and control

measures during an outbreak.

1.5 Thesis Outline

In this section, we will present an overview of the remainder of the thesis.

• Chapter 2 presents background information on topics that are necessary for understanding the method-

ologies employed in this thesis, including particle filtering and transmission models for influenza-like

illnesses.

• Chapter 3 examines a Susceptible, Exposed, Infected, Recovered and Vaccinated (SEIRV) compart-

mental model for influenza. Particle filtering is tested and compared with calibration in terms of the

discrepancy between empirical data and model output.

• Chapter 4 describes the unknown and stochastic parameters in a particle filtered SEIRV model, the

reason for considering parameters such as contacts per unit time and fraction reported incidence to be
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states of the particle filtered model. The chapter introduces scenarios for studying different configura-

tions of particle filtering. We provided a detailed exploration that explores whether and how different

configurations affect the performance of particle filtering, and measured by the same discrepancy in-

troduced in Chapter 3. Some limitations of particle filtering are also discussed in this chapter.

• Chapter 5 describes the use of particle filtering to adapt a previously developed model – which considered

fear among people during a pandemic – to be informed by a time series of search volumes. This chapter

provides details regarding the use of data from online communicational behaviour that can improve

pandemic predictions. Some other limitations of particle filtering are also discussed in this chapter.

• Chapter 6 provides a summary of the thesis. This chapter presents the main contributions of the thesis,

limitations of the work, and directions for future work that can improve the results of this thesis.

1.6 Publications

• Chapter 3 includes a manuscript entitled “Particle Filtering in a SEIRV Simulation Model of H1N1

Influenza” by Anahita Safarishahrbijari (AS), Trisha Lawrence (TL), Richard Lomotey (RL), Juxin

Liu (JL), Cheryl Waldner (CW) and Nathaniel D Osgood (NDO), published in Proceedings of the 2015

Winter Simulation Conference [15]. Authors’ contributions are as follows:

AS drafted the manuscript; TL helped with drafting the introduction and “Motivation for Calibration

and Particle Filtering” sections; RL helped with drafting the “Introduction” section; NDO designed

and supervised the study, provided the basic skeletal SMC structure, provided help in adapting it to

the H1N1 context, and modified the manuscript; AS and TL and RL contributed in modeling and

adapting the SMC framework; AS obtained results; AS contributed in obtaining empirical data from

the source website; CW and NDO gave advice about the model parameters and validity of the results;

JL provided advice regarding SMC.

• Chapter 4 includes a manuscript entitled “Predictive Accuracy of Particle Filtering in Dynamic Models

Supporting Outbreak Projections” by AS, Aydin Teyhouee (AT), JL, CW and NDO, published in

BioMed Central Infectious Diseases Journal [16]. Authors’ contributions are as follows:

AS, CW and NDO drafted the manuscript; NDO designed and supervised the study and helped advise

on adaptation of SMC machinery reused from the model characterized in the previous chapter; AS and

CW performed the statistical analysis; AS and AT contributed in modeling and obtaining results; AS

contributed in obtaining empirical data from the source website; CW and NDO gave advice about the

model parameters and validity of the results; JL gave advice about SMC.

• Chapter 5 includes a manuscript entitled “Social Media Surveillance Improves Outbreak Projection

via Transmission Models” by AS and NDO, submitted to the Journal of Medical Internet Research.

Authors’ contributions are as follows:
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AS and NDO drafted the manuscript; NDO designed and supervised the study and helped advice on

adaptation of the SMC algorithm used from the previous chapter; AS contributed in modeling, adapting

SMC to the model and obtaining results; NDO provided advice about the model and the relationship

between the empirical data and the model; AS contributed in obtaining empirical data from the source

websites.
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Chapter 2

Background

This chapter focuses on techniques that are applied to develop predictive models. In this chapter, we

provide background on mathematical description of particle filtering. Section 2.1.1 describes the basics of

Monte Carlo methods. Section 2.1.2 will include an introduction to particle filtering and provides those

characteristics of particle filtering that are shared between all chapters in this thesis. Section 2.2 briefly

explains influenza, particularly the H1N1 strain and section 2.3 describes a simple transmission model for

communicable diseases. The chapter further discusses a background of the role of data on predictive models

in the area of public health (section 2.4).

2.1 Particle Filtering

Particle filtering is a broad and popular class of Monte Carlo algorithms to provide approximate numerical

solutions to problems for non-Gaussian non-linear state-space models – problems which typically cannot be

solved analytically. The particle filtering algorithm was first introduced in 1993 by Gordon et al.[17]. Different

methods of filtering algorithms have been used in different fields from computer vision and navigation to

economics and mathematical finance [18, 19, 20, 21].

2.1.1 Sequential Monte Carlo Methods

Advanced particle methods for filtering and smoothing are amongst the most common techniques for ap-

proximation derived from the general sequential Monte Carlo (SMC) algorithm. This technique is useful

for online inference in dynamic systems and overcomes the limitations associated with analytically tractable

solutions, which are available for linear Gaussian models, but not for complex models. SMC is a subclass of

Monte Carlo algorithms that sequentially samples from a sequence of target probability densities πn(x1:n)

so as to compute the posterior distributions. Each target probability density (πn(x1:n)) is defined on the

product space Xn – n refers to the time and is a natural number – and can be written in the form of:

πn(x1:n) =
γn(x1:n)

Zn
(2.1)

where γn(x1:n) is a distribution defined on the product space Xn and Zn is the normalizing constant:
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Zn =

∫
γn(x1:n) dx1:n (2.2)

An approximation of π1(x1) and an estimate of Z1 at time 1 are provided by SMC. Then an approximation

of π2(x1:2) and an estimate of Z2 are provided at time 2. This approximation continues to time n. For filtering

techniques, if we choose γn(x1:n) to be p(x1:n, y1:n) and Zn to be p(y1:n), then πn(x1:n) would be p(x1:n|y1:n)

[22]. For the case considered here, x1:n represents the latent state of dynamic model.

Monte Carlo Methods – The Basics

This section closely follows [23]. To approximate a generic probability density πn(x1:n), we can sample N

random variables Xi
1:n (where 1 ≤ i ≤ N) is distributed according to that distribution and approximate the

distribution as follows:

π̂n(x1:n) =
1

N

N∑
i=1

δXi
1:n

(x1:n) (2.3)

where δx0
x denotes the Dirac delta mass (informally, impulse function) at x0. The expectation of a

function ϕn of a random variable X that has a density πn(x1:n) is given by:

E(ϕn) =

∫
ϕn(x1:n)πn(x1:n) dx1:n (2.4)

yielding a Monte Carlo estimation of the expectation as:

E(ϕn) :=

∫
ϕn(x1:n) π̂n(x1:n) dx1:n =

1

N

N∑
i=1

ϕn(Xi
1:n) (2.5)

1. While sampling is readily achieved for simple (e.g., uniform or normal) distributions or for unidimen-

sional distribution (via computation of the cumulative distribution), it is challenging to sample from

high dimensional probability distributions which are of complex character.

2. Even if we could easily sample from an arbitrary high-dimensional probability distribution πn(x1:n),

the computational complexity of such a sampling increases linearly as the dimensions n increases.

Importance sampling and sequential importance sampling are two functional Monte Carlo methods that

address both of the problems above, respectively[23].

Importance Sampling

Importance sampling is an approach that addresses the first problem above using a two-phased approach

to sampling from a target distribution. In the first phase, the approach draws samples generated from a

different distribution from which it is easy to sample, such as a multivariate Gaussian distribution, or an

exponential distribution, but weights those samples in a manner that takes into account the features of the
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target distribution. The second phase then samples from these samples with a probability given by the

weight. Here we cover the first phase of importance sampling; resampling is covered in section 2.1.1 below.

Importance sampling requires a density called the importance density, proposal or instrumental density,

qn(x1:n), from which it is easy to sample, and which is guaranteed to be of non-zero density for all points

x1:n for which the target density has non-zero density.

We then make use of weights ωn(x1:n) and the relations 2.1 and 2.2 [24] to give

πn(x1:n) =
ωn(x1:n) qn(x1:n)

Zn
(2.6)

Which implies that the un-normalized weight function is given by ωn(x1:n) = γn(x1:n)
qn(x1:n)

.

It follows follows that:

Zn =

∫
ωn(x1:n) qn(x1:n) dx1:n (2.7)

If we draw N samples Xi
1:n from the importance density qn(x1:n), we can then consider 2.5 and 2.7 to

obtain the approximation:

Ẑn =
1

N

N∑
i=1

ωn(Xi
1:n) (2.8)

In turn, by inserting the Monte Carlo approximation of qn(x1:n) into 2.6 and 2.8, we have:

π̂n(x1:n) =

N∑
i=1

W i
n δX

i
1:n (2.9)

where the normalized weights are given as follows:

W i
n =

ωn(Xi
1:n)∑N

j=1 ωn(Xj
1:n)

(2.10)

If we were interested in computing the expectation of a function ϕn, then we can use the estimate:

EIS(ϕn) :=

∫
ϕn(x1:n) π̂n(x1:n) dx1:n =

N∑
i=1

W i
n ϕn(Xi

1:n) (2.11)

Sequential Importance Sampling

Sequential importance sampling is an algorithm that can address problem 2 above by lowering the computa-

tional complexity at each time step [25] through recursive characterization of weights. In this algorithm, we

elect to adopt an importance distribution that can be characterized as follows:

qn(x1:n) = qn−1(x1:n−1) qn(xn|x1:n−1) = q1(x1)

n∏
k=2

qk(xk|x1:k−1) (2.12)

To obtain particles Xi
1:n ∼ qn(x1:n) at time n, we first sample Xi

1 ∼ q1(x1) at time 1. Then we sample

Xi
k ∼ qk(xk|Xi

1:k−1) at time k and for k = 2, ..., n. By virtue of selecting an importance distribution using
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the structure assumed above, we can compute the unnormalized weight recursively at each timepoint l in

a way that considers just the new data for time l – rather than having to consider all of the data for time

1 ≤ k ≤ l:

ωn(x1:n) =
γn(x1:n)

qn(x1:n)
=
γn−1(x1:n−1)

qn−1(x1:n−1)

γn(x1:n)

γn−1(x1:n−1) qn(xn|x1:n−1)
(2.13)

It is can be recognized that the first quotient in the equation 2.13 is simply ωn−1(x1:n−1) or it can be

written recursively as:

ωn(x1:n) = ωn−1(x1:n−1)αn(x1:n) (2.14)

where

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1) qn(xn|x1:n−1)
(2.15)

Alternatively, the above can be unpacked in an iterative fashion as

ωn(x1:n) = ω1(x1)

n∏
k=2

αk(x1:k) (2.16)

Following [26], sequential importance sampling can thus be summarized as follows:

For the initial time (time n = 1)

• Draw Xi
1 from q1(x1)

• Calculate weights ω1(Xi
1), and normalized weights W i

1 =
ωn(X

i
1)∑N

j=1 ωn(Xi
1)

. By default, we can elect to

impose uniform weights at time 1, and thus ω1(Xi
1) = 1, and W i

1 = 1
N .

For time n ≥ 2

• Sample Xi
n from qn(xn|Xi

1:n−1)

• Compute the weights recursively according to 2.15, as ωn(Xi
1:n) = ωn−1(Xi

1:n−1)αn(Xi
1:n)

Re-sampling

Section above 2.1.1 noted that importance sampling involves two successive phase; in the first phase, the

importance sampling approximation π̂n(x1:n) of a target distribution πn(x1:n) is generated by weighted sam-

pling from qn(x1:n). In the second phase, to draw approximate samples from the target distribution πn(x1:n),

we can sample from its importance sampling approximation π̂n(x1:n) by selecting Xi
1:n with the probability

of W i
n. Since we sample from an approximation π̂n(x1:n), which was itself generated from sampling, this

process is called resampling.
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Generic Sequential Monte Carlo Algorithm

Sequential Monte Carlo algorithms are developed by joining sequential importance sampling method and

resampling. At time 1, we collect some weighted particles (W i
1, X

i
1) and generate an importance sampling

approximation π̂1(x1) of π1(x1). In the next step, we resample particles, drawing, as usual, each with a

probability proportional to its weight. As a result, the particles with low weights tend to perish, and those

with high weights tend to reproduce. We then associate a weight of 1
N with each particle. We denote

the equally-weighted re-sampled particles by ( 1
N , X̄

i
1). In the next step, according to sequential importance

sampling, we sample Xi
2 ∼ q2(x2|X̄i

1). Hence (X̄i
1, X

i
2) is distributed according to π1(x1) q2(x2|x1). As a

result, we can then compute the corresponding importance weights simply as α2(x1:2). We then resample

particles based on these weights [25, 27]. A summary of the sequential Monte Carlo algorithm is as follows.

This formulation closely follows that of [26].

For time n = 1

• Sample Xi
1 from distribution q1(x1).

• Compute the weights ω1(Xi
1) and correspondingly normalized weights W i

1 ∝ ω1(Xi
1).

• Re-sample {W i
1, X

i
1} to obtain N equally-weighted particles { 1

N , X̄
i
1}.

For times n ≥ 2

• Sample Xi
n from distribution qn(xn|X̄i

1:n−1) and set Xi
1:n ← (X̄i

1:n−1 , X
i
n)

• Recursively compute the weights αn(Xi
1:n) and their normalized analogues W i

n ∝ αn(Xi
1:n)

• Re-sample {W i
n, X

i
1:n} to obtain N equally-weighted particles { 1

N , X̄
i
1:n}.

2.1.2 Sequential Monte Carlo Methods and Particle Filtering

In filtering approaches for a state-space model with state transition function f(xn|xn−1), we aim to com-

pute a numerical approximation to the distribution p(x1:n|y1:n) sequentially in time. Particle filtering is an

application of the sequential Monte Carlo algorithm described in the previous section.

Sequential Monte Carlo for Filtering

Consider the simple case of γn(x1:n) = p(x1:n, y1:n) and hence yielding πn(x1:n|y1:n) = p(x1:n|y1:n) and

Zn = p(y1:n). For this case, we only need to select the importance distribution, qn(xn|x1:n−1). It can be

demonstrated that the optimal form of importance distribution in the sense of minimizing the variance in

the important weights at time n and thus maximize the effective sample size would be qoptn (xn|x1:n−1) =

πn(xn|x1:n−1) [28, 29], where
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πn(xn|x1:n−1) = p(xn|yn, xn−1) =
g(yn|xn) f(xn|xn−1)

p(yn|xn−1)
. (2.17)

and the incremental importance weight is αn(x1:n) = p(yn|xn−1). Whether it is possible to sample from

this distribution or we need to approximate it, rather than making qn dependent on previous values of y (i.e.,

y1:n−1) or earlier values of x (i.e., x1:n−2), it is sufficient to use an importance distribution adhering to the

following structure:

qn(xn|x1:n−1) = q(xn|yn, xn−1) (2.18)

Considering 2.18, 2.15 and 2.14, we obtain an incremental weight update as the following.

αn(x1:n) = αn(xn−1:n) =
g(yn|xn) f(xn|xn−1)

q(xn|yn, xn−1)
(2.19)

It is notable that in computing the weight at time n, this formulation only considers the state of the

model at times n and n− 1, and the observed data at time n.

Particle Filter and its Characteristics in Proposed Models

Within this thesis, we used the particle filtering method for performing inference in state-space models. For

these models, the state of a system evolves across time, and the state xt of the system at time t depends only

on the state at time t− 1, that is, p(xt|xt−1, xt−2, ..., x1) = p(xt|xt−1). The state vector xt is assumed to be

latent or unobservable. Information about xt is obtained through noisy observations yt, which are governed

by the observation component for the probabilistic model conditional on the state variable xt, denoted by

g(yt|xt). The general particle filter algorithm leverages the approach of importance sampling which utilizes

the fact that if one wishes to sample from a target distribution p(x) but is unable to do so directly, one

can sample instead from an importance proposal distribution q(x) which holds the key features of p(x). By

maintenance of a series of weights together with corresponding samples from q(x), the net effect of sampling

from p(x) can be obtained. The algorithm can be summarized as follows and is following [30, 26]. Let N be

the number of particles.

1. At time t = 1, for i = 1, 2, ..., N

i) Sample X
(i)
1 from q1(x1|y1)

ii) In light of sample y1, compute a weight for each particle w
(1)
1 = g(yt|xt)f(x1)

q(x
(i)
1 |y1)

.

2. At time t ≥ 2, perform a recursive update as follows:

i) Advance the sampled state by sampling X
(i)
t ∼ q(x

(i)
t |yt, x1:t−1). Further, record the trajectory

by setting X
(i)
1:t to(X̄

(i)
1:t−1, X

(i)
t ).

ii) Update the weights to reflect the probabilistic and state update models w
(i)
t = w

(i)
t−1

g(yt|x(i)
t ) f(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |yt,x

(i)
t−1)

, where xt possesses the Markov property and xt and yt are conditionally independent.
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ii) Normalize the weights: w
(i)
t =

w
(i)
t∑N

i=1 w
(i)
t

3. Re-sampling step: For any time t, if the effective sample size is too small (i.e., if the variance of the

weights is too high, 1∑N
i=1(w

(i)
t )2

< k), re-sample X
(i)
t and set w

(i)
t = 1

N . Here k is a threshold value for

the variation of the weights [31]. In our models, we use the simplest and most widely used proposal

distribution, q(xt|yt, xt−1) = f(xt|xt−1), and the weight update simplifies to w
(i)
t = w

(i)
t−1 g(yt|x(i)t ).

Here the weights are not restricted to being updated by considering later measurements but are obtained

for a given observation point t by multiplying the weight associated with each particular particle at t by

the likelihood of observing the measured data conditional on the state of that particle. This approach,

used in our models and termed the condensation algorithm, does possess some vulnerabilities but is a

well-established and highly popular sub-type of particle filtering [30, 32].

In our models, each particle at a point in time t is associated with all state variables (thus completely

characterizing xt); such a particle can be viewed as embodying a hypothesis concerning the underlying state

of the model at time t. It is notable that because the suggested dynamic models include parameters such

as contact rate and fraction of reported incidents which are associated with (evolving) state variables, the

particle includes the state of such evolving parameters as well.

A key element of the particle filtering algorithm used here consists of the definition of the likelihood

function g(yt|x(i)t ), which is the likelihood of observing observation yt given the state of a given particle. For

this thesis, the likelihood function was based on the negative binomial distribution, which was preferred as

being a more robust distribution than the binomial distribution for the particle filtering methodology. This

reflects the fact that for situations where all particles are simply a number of binomial trials (e.g., count of

incident cases) smaller than the corresponding empirical datum observed, weights identically equal to zero

would be triggered across all such particles, causing a singularity during weight renormalization [33]. The

likelihood functions used in each model are explained in details in the corresponding chapters.

Limitations of Particle Filtering

The particle filtering algorithm is associated with several limitations. Despite sampling from the optimal

importance distribution p(xn|yn, xn−1), the variance of the resulting approximation depends on the variance of

p(yn|xn−1). At a practical level, this implies a need to resample frequently and the approximation p̂(x1:n|y1:n)

of the distribution p(x1:n|y1:n) may not be reliable. Particularly, for k << n, the distribution p̂(x1:k|y1:n) will

sometimes be approximated by only a few particles (because the algorithm has resampled very frequently

between times k and n). The problem associated with this approach is that it is just the variables {Xi
n} that

are sampled at time point n, while previous values along the path {Xi
1:n−1} are unchanged. One can improve

this algorithm by modifying the values of the path in addition to sampling the last value {Xi
n} at time n

[23]. In addition, despite being parallelizable, particle filter requires a lot of particles and is comparatively

computationally expensive, although not so much so to prevent real-time updates for data arriving at rates
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characteristic of epidemiological data streams. Also, Particle filtering cannot be used to sample from the

value of static parameters (in contrast to PMCMC, which can be used in this way). Since particle filtering

relies on the accuracy of the underlying state space model, and because the state space models examined

here posit random mixing within a population, there can be limitations associated with spatial scalability.

Although particle filtering can correct model states and parameters, the state space model dynamics and

projections can be inaccurate at very local or large scale levels. This could contribute to significant model

deviations from the underlying situation between observations, and in the course of model-based projections.

2.2 Influenza

Influenza, also colloquially known as “the flu”, is a respiratory illness of varying types and pathophysiology.

It is a contagious viral infectious disease spread by the coughs and sneezes of and even via touching an

infected person. Since influenza is viral, it can not be treated by antibiotics, and the best way to prevent

influenza is vaccination [34]. Adults are contagious 1-2 days before observing symptoms and up to 7 days

after becoming ill.

There are three types of human influenza viruses: A, B and C. While virus A can cause both seasonal

epidemics and emerging, new and very different influenza A infections, virus B causes only seasonal epi-

demics and virus C typically causes mild respiratory illness not leading to epidemics. The sub-types of

Influenza A virus are defined based on two proteins on the surface of the virus: the hemaglutinin(H) and the

neuraminidase(N). There are 18 different hemagglutinin sub-types and 11 different neuraminidase subtypes.

There are also different strains of influenza A. Currently there are influenza A H1N1 and H3N2 viruses

affecting humans.

In 2009, a new influenza A (H1N1) virus emerged, which was different from the circulating H1N1 at that

time [35]. In Canada, about 3.5 million – about 10% of the population – were infected, resulting in 428

confirmed deaths [36].

2.3 Introduction to Communicable Disease Transmission Models

Many types of models can be used to forecast the progress of infectious diseases. The first mathematical model

of epidemics was introduced by Bernoulli in 1766 to analyze the progress of mortality caused by smallpox

in England [37]. After Bernoulli, many publications addressed epidemics modeling, but the first modern

mathematical model in epidemiology was developed by Ross in 1911 [38]. He used a set of equations to

describe the discrete-time dynamics of malaria. Following Ross’s work, Kermack and McKendrick developed

a deterministic compartmental model for epidemics by suggesting that the probability of infection of a

susceptible increases with the number of its contacts with infected people. He introduced a SIR – where S, I

and R represent the size of the population of Susceptible, Infected, and Recovered individuals, respectively

– model by giving the rate at which susceptible people are infected as kSI. Kermack and McKendrick also
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considered the rate at which infected individuals become recovered as λ I and the rate at which recovered

people become susceptible again to be µR, where λ and µ are constants [39, 40, 41]. Different mathematical

modeling and simulation approaches can be used in epidemiology according to different perspectives in

looking at the situation, and particularly when seeking to investigate different questions. Statistical methods

for epidemic surveillance can be used for early identification of spatial patterns that can aid in controlling

the spread of outbreaks. [42] State-space models – mathematical models within the context of dynamical

systems – can be used to project the evolution of an ongoing outbreaks or pandemic or to help with forecasting

potential epidemics. Based on the complexity of the problem and the precision of approximation of real-

world systems, state-space models can be divided into compartmental (including System Dynamics), discrete

event, and agent-based models. Compartmental models, characterized in the form of differential equations,

describe the coarse-grained dynamics of outbreaks. For example, considering the evolution of an epidemic as

a function of time or age can be described in a compartmental model. The population is usually divided in

stocks such as susceptible (S), Exposed (E), Infected (I), Recovered (R) or even Vaccinated (V) based on their

health state as an extension of Kermack and McKendricks’s SIR model. Through stratification, SIR-type

models can also be extended to describe demographics such as mortality, migration, age distributions, aging

and gender. [43, 44, 45].

Discrete event models describe the operation of a system as a discrete sequence of events in time. These

model are usually at individual level and emphasize queuing, waiting times and waiting length size in struc-

tured workflows typically limited by capacity. There can be transitions within this associated with health

status change. For example for a stochastic SIR model, in case of a physical communication, an infected

individual (I) infects a susceptible (S) with a probability. Several SIR stochastic models within the context

of discrete event have been developed, considering age structure, environmental transmission of virus and

even a combination of epidemic and economic models [46, 47].

Agent-based modeling helps with simulating interactions of agents, including individual, organizations

and groups, considering the effects of such interactions on the system as a whole and vice-versa. These

models are particularly powerful for capturing certain effects (e.g., heterogeneity, network patterns, history-

dependence, and in representing individual-level decision making). Agent-based models have been used

to assess spatiotemporal pattern of pandemics, considering population mobility, details about households,

location of schools, workplaces, and hospital units [48, 49, 50, 51].

In this work, we have applied a System Dynamics approach, which constitutes a subtradition of com-

partmental modeling focused around feedbacks and accumulations. In chapters 3 and 4, we used a SEIR

model and added a vaccinated (V) state to the model. In 5, we explicated and applied a previously published

coupled contagious dynamic model, which incorporated states representing the level of fear in population

(e.g., scare state). Description of models and their parameters is presented in the relevant chapter.
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2.4 Social Media Data

In recent years, data extracted from search engines and online communication platforms have been employed

to investigate social trends.

Many studies have examined whether data obtained from Google can be used to develop statistical

forecast models. This subset of research evaluated the degree to which GFT data in combination with

statistical (rather than dynamic) models can support accurate predictions. For example, Dugas et al. designed

statistical forecast models to predict one week in advance from weekly counts of confirmed influenza cases over

seven seasons from 2004 to 2011. They employed the Box-Jenkins method, generalized linear models, and

generalized linear auto-regressive moving average (GARMA) methods to assess the contribution of external

variables such as Google Flu Trends, meteorological data, and temporal information. According to their

results, GARMA with a Pascal distribution integrating GFT data provided the most accurate predictions of

weekly incident infuenza case counts [52]. Moreover, Pollett et al. abstracted weekly proportions of positive

influenza-tests for eight countries in Latin America from FluNet for the period of January 2011 to December

2014. They also obtained concurrent weekly Google-predicted influenza activity in the same countries from

GFT [53]. They determined the Pearson correlation coefficients between observed and Google-predicted

influenza activity trends for each country. They further used permutation tests to examine background

seasonal correlation between FluNet and GFT for each country. The investigators reported substantial

discrepancies between FluNet and GFT-predicted influenza activity throughout Latin America. Also, Araz

et al. performed correlation analyses to understand temporal correlations between several predictors of ILI-

related emergency department (ED) visits. They used the clinical data available for Douglas County, for

Omaha within that County, and for a major hospital in Omaha. They further used GFT for both Nebraska

and Omaha, total ED visits in Douglas County attributable to ILI, and a ILI surveillance network data

for Douglas County and Nebraska as the predictors and data for the hospital’s ILI-related ED visits as

the dependent variable. They used Seasonal Autoregressive Integrated Moving Average and Holt Winters

methods with linear regression models to forecast ILI-related ED visits at the hospital and evaluated model

performance by comparing the root mean square errors (RMSEs). Their research suggested that GFT data

statistically improved the performance of predicting ILI-related ED visits in Douglas County, and that this

result could be generalized to other communities [54].

Some lines of previous research have investigated the correlation between real time empirical data and

data obtained from Google. For example, Thompson et al. evaluated the relationship between GFT estimates

and syndromic indicators of influenza disease activity developed using ED data – total ED visits attributed

to ILI and percentage of visits attributed to ILI. They found the correlation among these indicators and

between these indicators and weekly counts of clinically-confirmed influenza in Manitoba. They used linear

regression models and concluded that both ED and GFT data performed well as syndromic indicators of

influenza activity, and were highly correlated with each other in real time [55].
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In an important subset of public health research, investigators jointly leveraged influenza data drawn

from both traditional and novel data sources. Santillana et al. used five different sources: near real-time

hospital visit records from a medical practices management company, Google Trends time series, influenza-

related Twitter microblogging posts, and FluNearYou, a participatory surveillance system to self-report

ILI and GFT, to monitor and autonomously update their statistical models. They applied machine learning

approaches such as Stacked linear regression, Support Vector Machine regression, and AdaBoost with Decision

Trees Regression as their modeling approaches to leverage data sources and provide real-time and forecast

estimates of influenza activity in the US. According to their results, the information from multiple data sources

complement one another and lead to the most robust flu predictions [56]. Moreover, Sharpe et al. collected

data from the CDC, GFT, HealthTweets, and Wikipedia for the 2012-2015 influenza seasons. Google, Twitter

and Wikipedia were compared using Bayesian change point analysis to detect seasonal changes, or change

points, in each of the data sources [57].

Unlike the studies mentioned in the previous paragraph, which used online data sources in statistical

prediction models, we used both clinical data and search volume data in a System Dynamics model simulating

the contagion dynamics of both disease and fear. Our work suggests that frequent reporting of clinical data

and availability of social media surveillance can be used to reconstruct the state of dynamic models as new

data about the real world arrives to project evolution of outbreaks at their early stages. The early projection

of outbreaks would particularly be useful in the context of emerging infectious diseases with unknown or

little-known parameters. So informed, the development of well-established dynamic models can offer strong

guidance for health policy makers by providing them with key information about the risk and magnitude of

outbreaks.

In this work, specifically in chapter 5, we used normalized daily Google search counts from Google trends

and un-normalized weekly search counts from GFT for the provinces of Manitoba and Quebec for the period

of the second wave of the 2009-2010 H1N1 pandemic. Specifically, we used search terms related to flu for the

period of October 6th, 2009 through January 18th, 2010 for Manitoba and October 6th, 2009 and December

19th, 2010 for Quebec [58, 59].

We investigated whether the predictions of a System Dynamics model assisted by particle filtering can

improve through the use of both Google search data and clinical data compared to results from using only

clinical data.
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Chapter 3

Particle Filtering in a SEIRV Simulation Model of

H1N1 Influenza

This chapter includes text drawn from a manuscript entitled “Particle Filtering in a SEIRV Simulation

Model of H1N1 Influenza” by Anahita Safarishahrbijari, Trisha Lowrence, Richard Lomotey, Juxin Liu,

Cheryl Waldner and Nathaniel D Osgood, published in Proceedings of the 2015 Winter Simulation Conference

[15]. The author’s contributions are described in chapter 1.

Numerous studies have been conducted using simulation models to predict the epidemiological spread

of H1N1 and understand intervention trade-offs. However, existing models are generally not very accurate

in H1N1 model predictions, in the sense that their predictions mis-estimate what actually happens in the

real world. In this chapter, we examine the impact of using particle filtering in a compartmental SEIRV

(susceptible, exposed, infected, recovered and vaccinated) model which considers the impact of vaccination

on the outbreak in the province of Manitoba. For the purpose of evaluating the performance of the particle

filtering method, this work further compares the ability of particle filtering and traditional calibration to

anticipate the evolution of the outbreak. Preliminary simulated results indicate that the particle filtering

approach outperforms the calibration method in terms of the discrepancy between empirical data and model

data.

3.1 Introduction

The emergence and subsequent spread of pandemic H1N1 present several challenges to public health pro-

fessionals and policy makers, including as planning vaccination schedules and clinical resource constraints.

Epidemiological time series by themselves fail to offer much assistance for these tasks. This reflects the fact

that they are not only extremely noisy, but – more importantly – fail to provide insight into counterfactu-

als, such as how an outbreak will play out in the absence of further intervention. Dynamic modeling for

outbreak analysis plays a significant role in the planning of the public health reaction to infectious disease

outbreaks. Statistical and mathematical models aid in understanding the role of social distancing measures

such as school closure and in evaluating the value of the vaccination programs and establishing priorities

to target populations for vaccination, prioritizing data collection, addressing application of antiviral therapy

and in easing collaboration between policy-makers and analysts. One of the most essential planning tools is
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to anticipate outbreak progression in light of empirical time series data. While models offer strong benefits,

there is the inevitable need to omit or approximate some processes and factors. Inevitably – and particu-

larly for fast-breaking outbreaks of emerging pathogens – this leads to simplification and misestimation of

the dynamic models. These shortcomings – together with stochastic transitions associated with human and

economic behavior – inevitably lead the model forecasts to diverge from empirical data [60, 61, 62].

This quandary has attracted many and diverse studies from the research community. Seasonal influenza

viruses, including H1N1, cause 3 to 5 million cases resulting severe illness each year with between 250, 000

and 500, 000 deaths (according to the WHO reports). Each year the vaccine is modified to include currently

circulating strains thought to present the greatest risk to public health. Antiviral drugs can also be used to

limit the severity of complications and risk of death. However, the virus is constantly changing and is an

ongoing source of uncertainty in public health. Simulation modeling is an important tool in predicting the

behavior of the virus and planning intervention strategies. Hence, Manchanda et al. proposed an immune

system mathematical modeling methodology that focuses on the explanation of variations in influenza kinetics

caused by virus strains in mice. Using ordinary differential equations, the authors model considers several

variables and parameters to conduct sensitivity and identifiability analysis. The model is able to predict

the outcome of infection, and simulate and interpret the cause of outcomes. However, the work offers little

contribution at the epidemiological level, such as with regards to the impact of vaccination, and the spread

of infection with exposure to the virus and so on [63]. Furthermore, the need to understand influenza H1N1s

transmission motivated by Chao et. al to model a colony of agents representing virtual humans termed the

“artificial community”. The authors defined connections between the agents at three ordinal levels, such

that the agents can be described as having strong ties, ordinary ties, and weak ties with each other. By

adopting the SEIR model, the authors seek to pay attention to critical flow constraints, such as the natural

history characterized by a latent period and treatment-receiving period. The authors, however, did not

compare the model results with any empirical data and the sensitivity analysis is not sufficiently detailed

to guarantee reproducibility of the model outcome [64]. Moreover, the global spread of the H1N1 virus

caught the attention of Shubin et. al who studied the impact of the outbreak of H1N1 in Finland. The work

considered prior and posterior distributions factors such as severity. The model predictions show that the

severity of the outbreak in the second season is almost half of the first epidemic. Although the authors in

this case looked into the effect of vaccination, their primary model is the susceptible, infective, and recovered

(SIR) model, rather than focusing on secondary infection risks [65]. Also, Pongsumpun and Tang have seen

the need to study the impact of H1N1 virus transmission using the SEIQR (susceptible, exposed, infected,

quarantine, and recovered) model. The proposed model also took into account the incidents of death in

the population and the impact of repetitive contacts. The work showed that when the repetitive contacts

increase, the number of susceptible people decreases. The authors, however, did not consider vaccination

and its impact on the population [66]. Particularly for diseases with nonspecific symptoms, several factors

obstruct the tracing and prediction of emerging epidemics: the disconnect between transparent epidemic
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dynamics and what is discernible from noisy and incomplete surveillance data and the imperfectly observed

system. Also, behavior changes compound this through altering both true dynamics and reporting patterns.

Birrell et. al seek to unravel these effects to resolve the hidden dynamics of the 2009 influenza A/H1N1

pandemic in London. To disclose significant changes in contact patterns and health-seeking behavior, they

embed an age-structured model into a Bayesian synthesis of multiple evidence sources. As the result, this

approach is capable of real-time learning about model parameters during the epidemic progress, and provides

a sequence of nested projections to reflect the epidemic [67]. Conway et. al in their model, represented

the Greater Vancouver Regional District and surrounding residential areas with a population of 2 million

and investigated the effect of timing of different vaccination strategies in estimating the transmission of the

pandemic H1N1 [68]. With the development of a compartmental susceptible-infected-recovered (SIR)-type

epidemic model, different distribution strategies were initiated. For each vaccination strategy, the effect

of varying the vaccination strategy under various baseline transmission parameter values were tested. It

was found that the model output was consistent with provincial surveillance data and that vaccine efficacy

had an important impact on depleting the size of the susceptible population and consequently reducing the

outbreak size. Their work could further be improved by considering the addition of a vaccination stock in

their compartmental model. Tuite et. al developed a compartmental model of influenza transmission in the

Canadian population and sought to obtain the optimal strategy for prioritization of vaccine distribution in

order to minimize morbidity and mortality rates [69].

To yield a more accurate consensus estimate [33] used sequential Monte Carlo methods in the form of

particle filtering to combine intuitions from dynamic models containing systematic errors and noisy empirical

data, and to aid in parameter estimation. To demonstrate the advantages from particle filtering, parameters

and variables in an aggregate systematically biased SEIR model, they compared particle filtering against

synthetic ground truth produced by an agent-based model. In this chapter, in addition to introducing a

model of H1N1 in which vaccinated percentage has been considered, we use clinical data from the Midwestern

Canadian province of Manitoba for H1N1 pandemic 2009 to evaluate the application of particle filtering

approach, using a temporally-based cross-validation approach. Specifically, we compare the performance

of the particle filter with a traditional calibration method in anticipating the future evolution of counts of

reported cases.

3.2 Motivation for Calibration and Particle Filtering

For emergent conditions such as H1N1, there is an acute need to plan and mathematical modeling through

outbreak analysis plays a significant role in the planning. The corresponding parameter values, the current

situation, and even the natural history of the infection, are frequently unknown or poorly known in the early

stages of an emergent condition. In this context, a model that supports a wide range of interpretations

is particularly valuable. In our model we sought to obtain empirical estimates for various parameters,
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for example, contacts per week multiplied by probability of infection transmission given exposure (cβ),

mean latent time (τ), fraction reported incidence (f), fraction initially susceptible, fraction initially exposed,

fraction initially infective and fraction initially recovered by calibrating the model to the empirical data

obtained by Manitoba Health, Healthy Living and Seniors. To predict shorter-term projection of the existing

conditions or intervention scenarios, well-calibrated dynamic models are frequently accurate, but for longer

term projections they tend to diverge from empirical patterns and also, generally, there exist a shortage of

reliable and automated means of keeping current with the latest in empirical data. Particle Filtering was

introduced as a method that builds on well-studied statistical techniques to join together dynamic models

and empirical data, while decreasing the inherent weakness of both. While calibration processes often require

much time and typically entail manual oversight and intervention, the particle filtering process was executed

in considerable less time and proved to be more accurate in model predictions. Particle filtering however, has

been applied to comparatively few previous applications in the public health area, specifically in predicting

infectious diseases.

3.3 Scheme of the Model

We present the formulation of a compartmental model, which includes Susceptible, Exposed, Infectious,

Recovered and Vaccinated stocks (SEIRV). We present here a comparison between the applications of a

particle filter and a calibration method for a System Dynamics transmission model for H1N1 influenza,

and then evaluate the performance of that particle filter compared to that of traditional calibration when

operating using empirical data from Manitoba Health, Healthy Living and Seniors.

3.3.1 Empirical Data

The empirical data obtained from Manitoba Health, Healthy Living and Seniors indicated weekly confirmed

cases of pH1N1 and vaccine delivery rates for the period of October 6th, 2009- January 18th, 2010 [58].

3.3.2 Dynamic Model

We describe here our dynamic model to be used with the particle filter and calibration. Figure 1 demonstrates

all stocks, flows and parameters.

The aggregate compartmental state equations for the model are given as follows:

Ṡ = −cβ I

S + E + I +R+ V
S − abS (3.1)

Ė = cβ
I

S + E + I +R+ V
S + cβ

I

S + E + I +R+ V
V − E

τ
(3.2)
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Figure 3.1: System dynamics model

İ =
E

τ
− I

µ
(3.3)

Ṙ =
I

µ
+
V

va
(3.4)

V̇ = abS − V

va
− cβ I

S + E + I +R+ V
V (3.5)

In comparison with the previous work, we have added a vaccinated stock to the model. We added this stock

to capture the impact of vaccination, which is known to strongly influence the dynamics of many infectious

diseases; such a stock is routinely incorporated into many contemporary compartmental models of influenza

transmission [70, 71, 72]. We have defined the input of this stock as the multiplication of Susceptible, vaccine

effectiveness parameter (b) and the per-capita vaccination rate (a), where the vaccine effectiveness parameter

refers to the ability of the vaccine to bring about the intended beneficial effects on vaccinated individuals

and the vaccination rate (a) is defined to be the fraction of newly vaccinated people taken over the entire

population per unit time (i.e., the vaccination rate parameter is a variable of time). For this parameter (a),

we made use of the empirical data obtained from Manitoba province. The outputs of the “Vaccinated” stock

are the number of people vaccinated divided by mean time taken for antibodies to develop (νa) which enter

“Recovered” stock and number of people vaccinated multiplied by force of infection which enter “Exposed”

stock. The model runs for 15 weeks and the primary model output examined here are reported infectives which

is a multiplication of the size of “Infective” stock and the fraction of reported incidence. The compartmental

parameters are specified in Table 1. In this work, we did not conduct sensitivity analysis to examine the

sensitivity of our model to static parameters. However, some of the previous works from which we extracted

the value of static parameters have considered sensitivity analysis [69].

It is notable that the model includes a stochastic process associated with Contacts per Week and Fraction

of Reported Incidents. In the particle filtering model, these parameters are initially uniformly distributed be-
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Variable name Notation Value Source Units

Probability of infection transmission

given exposure

β 0.06 Expert

opinion

Unit

Mean time to recovery µ 1 [69] Week

Vaccine effectiveness b 0.9 [68] Unit

Mean time taken for antibodies to de-

velop

νa 2 Expert

opinion

Week

Total population size N 1214403 [73] Person

Mean latent time τ Uniformly distributed (0.4, 0.8) [69] Week

Vaccination rate a Extracted from empirical vacci-

nated percentage

1/Week

Table 3.1: Table showing parameters

tween maximum and minimum parameter values, however, these parameters are calibrated in the calibration

model.

3.3.3 Particle Filter Characteristics in Proposed Model

In our model, each particle at a point in time t is associated with all state variables (S,E, I,R, V ). Moreover,

the suggested dynamic model includes parameters such as contact rate and fraction of reported incidents

which are associated with state variables evolving over time. To use particle filtering to adapt to values of

such parameters, we further associate each particle with a value for the parameters c and f. Each particle is

thus associated with a vector [S,E, I,R, V, c, f ]. The results presented in this chapter are based on model

runs employing 10000 particles, which was judged to be enough because it appears to yield a well-behaved

distribution in most cases, and is clearly enough according to the judgment of statistician colleagues.

In estimating the likelihood formulation for observing yt individuals per week given an estimated weekly

count of it becoming cases, we employ the negative binomial distribution p(yt|it), where p = it
it+r

, r is a

dispersion parameter and it = E
τ .

3.3.4 Comparison between Particle Filter and Calibration

In this contribution, we investigate the degree to which the model is efficient in robust estimation and predic-

tion of model states with and without particle filtering. Since the knowledge of the situation is imperfect there

is frequently a need to estimate model parameters based on available empirical data regarding phenomena

that are emergent within the model.

In this section, we investigate the capabilities of particle filter and calibration methodologies in mitigating

the effects of aggregation and prognosticating model states in the context of data from a real-world outbreak.
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We defined a variable, “check time”, which indicates the time t up to which the particles weights are updated

based on observation, where 0 ≤ t ≤ T ∗. After t = T ∗, the particle filtering ceases, in that particle weights

is no longer updated using the empirical data, and no further re-sampling occurs. In this experiment,

we utilized the parameter “fraction reported incidence” to account for the fact that reported counts only

included a subset of the persons infected. For uncertain parameters such as “probability of transmission

given exposure” and “mean latent time”, we define a function that takes a range of uniformly distributed

values from minimum to a maximum. For the calibration method, we ran the model for 20, 000 iterations

(For more iterations, the objective function did not appear to be substantially decreasing). In order to

ensure robustness in the context of the stochastic evolution of model parameters c and f , we further ran 10

realizations (replications) per iteration. For this optimization experiment, the objective function involved

minimizing the average of square of difference between linearly interpolated datasets which are model data

and empirical data. The integration range is the intersection of argument ranges of datasets. In calibration,

we considered the empirical data up to time t = T ∗ and after calibrating the parameters, we were able to

obtain simulation results for the entire time range (including time points t > T ∗) for the model based on those

parameters. Specifically, we assess particle filter and calibration by comparing their estimates of reported

new infections against corresponding quantities from empirical data.

3.4 Results

According to Figures 3.2,3.3, 3.4 and 3.5 we have demonstrated the performance of particle filter and calibra-

tion for T ∗ = 14 and T ∗ = 6. In Figures 3.3 and 3.5, we have plotted all sampled particles. We have defined

the discrepancy as a function which focuses on the average per-time-unit error during the time t > T ∗. In this

case, we are only considering how accurate it is in predicting data about which it has not been told (a form of

cross-validation). Besides, we have divided the discrepancy over the time period t > T ∗ by the length of that

time period to have comparability of results. The function below calculates the value for discrepancy found

for the particle filtering process. This function was defined as
∑Tf

i=T∗+1
(xM

i −x
E
i )2

Tf−T∗ for the calibration process,

where is the end time, is the data extracted from the model at time i and is the respective empirical data.

For the particle filtering methodology, by sampling n particles with larger weights, the discrepancy value is

obtained via below formula while is data pertaining sampled particle j at time i. In figures 3.4 and 3.5, the

red data items (prior to and including T ∗) were incorporated for both particle filtering and calibration, and

the black data items (after T ∗) were incorporated into neither the calibration nor the particle filtering.

Figure 3.6 presents a histogram showing the discrepancies from Particle Filter and Calibration for T ∗ =

6, 7, 8, 9 and 10. For all values of t = T ∗, the discrepancy from particle filter is less than the discrepancy from

calibration. However, for both the particle filter and calibration methods, the discrepancy increases as the

value of decreases. Put another way, as the window of empirical data considered by both the particle filter

and calibration methods grow in size, the accuracy of those approaches in predicting the entire time series
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Figure 3.2: Calibration results for 20, 000 iterations and for T ∗ = 14.

Figure 3.3: Particle filtering results for T ∗ = 14.

rises.

3.5 Conclusion

In this work, we explored the performance of particle filtering and calibration in a System Dynamics model

against empirical data from an H1N1 outbreak. The particle filtering was put forward to readily read data

and further correct the model output using historic data. In addition to particle filtering contributing to

the estimation of model states, particle filtering also aided in estimating the model parameters. It was well

adapted to evolution in the effective value of dynamic parameters that would otherwise be treated as static.

For example, by applying a distribution to the Contacts per week parameter, a more accurate estimate was

achieved during the model simulation.

The work examines the SEIRV (susceptible, exposed, infected, recovered and vaccinated) model and

provides an extension to many existing SEIR models to capture the pronounced impact of vaccination on the

dynamic of infectives. Moreover, the proposed model is similar in structure to the models that do consider

the effects of vaccination [70, 72, 71]. The discrepancy for the particle filtering was found to be less than the
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Figure 3.4: Calibration results for 20, 000 iterations and for T ∗ = 6.

Figure 3.5: Particle filtering results for T ∗ = 6.

discrepancy associated with the calibration method when compared to existing empirical data. In addition

to this phenomenon being true for different time scenarios, the particle filtering methodology was observed

to better predict the model outcome when using observable data. The calibrated parameters and their values

for check time 14 are specified in Appendix A.

The main contributions of our work include the proposal of the SEIRV model, the comparison of particle

filtering and calibration methodologies and the prediction of future outcome based on current empirical data.

Many priorities remain for future work. It will be important to incorporate heterogeneity within our model

by observing various age groups and also anti-viral treatments. We further hope to investigate the impact of

relaxing the constraints of the condensation algorithm on model accuracy.
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Figure 3.6: Logarithmic Graph Showing Discrepancy for Calibration and Particle Filtering vs T ∗.
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Chapter 4

Predictive Accuracy of Particle Filtering in Dynamic

Models Supporting Outbreak Projections

The text of this chapter is largely drawn from a manuscript entitled “Predictive Accuracy of Particle

Filtering in Dynamic Models Supporting Outbreak Projections” by Anahita Safarishahrbijari, Aydin Tey-

houee, Juxin Liu, Cheryl Waldner and Nathaniel D Osgood, published in BioMed Central Infectious Diseases

Journal [16]. Author’s contributions are described in chapter 1.

While a new generation of computational statistics algorithms and availability of data streams raises

the potential for recurrently regrounding dynamic models with incoming observations, the effectiveness of

such arrangements can be highly subject to specifics of the configuration (e.g., frequency of sampling and

representation of behaviour change), and there has been little attempt to identify effective configurations.

Combining dynamic models with particle filtering, we explored a solution focusing on creating quickly

formulated models regrounded automatically and recurrently as new data becomes available. Given a latent

underlying case count, we assumed that observed incident case counts followed a negative binomial distri-

bution. In accordance with the condensation algorithm, each such observation led to updating of particle

weights. We evaluated the effectiveness of various particle filtering configurations against each other and

against an approach without particle filtering according to the accuracy of the model in predicting future

prevalence, given data to a certain point and a norm-based discrepancy metric. We examined the effective-

ness of particle filtering under varying times between observations, negative binomial dispersion parameters,

and rates with which the contact rate could evolve.

We observed that more frequent observations of empirical data yielded super-linearly improved accuracy

in model predictions. We further found that for the data studied here, the most favourable assumptions to

make regarding the parameters associated with the negative binomial distribution and changes in contact

rate were robust across observation frequency and the observation point in the outbreak.

Combining dynamic models with particle filtering can perform well in projecting future evolution of

an outbreak. Most importantly, the remarkable improvements in predictive accuracy resulting from more

frequent sampling suggest that investments to achieve efficient reporting mechanisms may be more than

paid back by improved planning capacity. The robustness of the results on particle filter configuration in

this case study suggests that it may be possible to formulate effective standard guidelines and regularized
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approaches for such techniques in particular epidemiological contexts. Most importantly, the work tentatively

suggests potential for health decision makers to secure strong guidance when anticipating outbreak evolution

for emerging infectious diseases by combining even very rough models with particle filtering method.

4.1 Introduction

According to World Health Organization (WHO), seasonal influenza viruses cause 3 to 5 million cases of

severe illness, with about 250,000 to 500,000 deaths each year, with emerging-strains sometimes significantly

increasing this burden. An important example of this was high-burden emergence of pandemic influenza A

(H1N1) during the 2009-2010 influenza season. Vaccination and intervention strategies such as school closures

for early mitigation of pandemic influenza spread may reduce severe complications and deaths [74]. Key

concerns during an outbreak include staffing requirements for implementation of a pandemic response, clinical

resource constraints [75], managing individuals expectations and behaviors, which often relate their risk

perception [76], and mobilization of health resources [77]. Rapid or ideally real-time reporting of surveillance

data provide a clear picture of what has happened, but fail to provide clarity on how the epidemic will evolve.

Simulation modeling can be an important tool to anticipate what is most likely to happen in the near future,

to ask questions concerning interventions and identify desirable policies.

Mathematical models describing the dynamic of epidemiological infections can be useful for projection

purposes [63, 65, 64, 66, 78], but often the fundamental challenge in leveraging models for emerging commu-

nicable diseases and strains is that there is limited epidemiological knowledge regarding the natural history

of infection and the values needed for model parameters [79]. While a well-formulated model can be useful

for planning, often the knowledge needed to build that model is lacking at the time when it is the most

urgently needed. In this situation, a precisely calibrated and highly tuned model can play an important role,

but is often infeasible to build in a time compatible with planning needs. Even for models of endemic infec-

tions such as seasonal influenza in which refined estimates of parameter values and understanding of natural

history are available, model predictions secured early in an outbreak inevitably diverge from observations

[80, 61, 62]. This reflects the fact that all models are simplifications (and thus inevitably omit factors). In

addition, stochastics are involved in real-world systems, which depend on unpredictable or hard-to-predict

factors such as shifting vaccine attitudes and risk perception that can impact contact patterns [81, 82, 83], as

well as the vagaries of transmission and the health system response. This divergence is made more likely by

the fact that many such factors including changes in human contact patterns are believed to play a substan-

tial role in disease transmissions [82, 83, 14] and are often not captured in models. Statistical filtering and

estimation methods for dynamic models, such as Sequential Monte Carlo (SMC) and Markov Chain Monte

Carlo (MCMC) methods, provide an attractive tool to not only create model predictions based on where we

are right now, but to use empirical observations from continuing surveillance to reground that model on an

ongoing basis [61, 84, 67, 85, 86, 31].
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Among estimation algorithms, Kalman filtering has long been used for creating estimates based on consen-

sus of empirical data and model predictions using Maximum Likelihood Estimation (MLE) [87, 88, 89, 90, 91].

However, it is hampered by stiff distributional assumptions regarding process and measurement error. The

Kalman filters reliance on gaussian assumption and MLE further limits its accuracy, particularly in the con-

text of non-linear systems. The reliance of Kalman filtering on linearization of nonlinear distributions both

raises strong challenges for accurate state estimation in the context of infrequent observations and limits

the applicability of such models to an important but circumscribed subset of transmission models for which

linearization is possible [33].

As a SMC, particle filtering offers similar overall types of benefits as Kalman filtering while relaxing

such constraints. Particle filtering deals with less restrictive assumptions concerning the noise and process

model, and samples from a joint distribution of state trajectories rather than conforming to a MLE approach.

This method [92] samples from the posterior distribution of model state trajectories, combining empirical

data and model dynamics. Key mechanics of particle filtering are drawn from the importance sampling

method. With importance sampling, we sample from a particular distribution from which sampling is difficult

(target distribution) in a two-phased approach in which we first draw weighted samples from an alternative

distribution (importance proposal distribution) that retains the major properties of the target distribution,

and then sample from those weighted samples with a probability proportional to their weight. Similar to

importance sampling, in a particle filter, sampling is performed from the particles based on their weights.

When new empirical data arrive, the filter further updates the weights to reflect the fitness of particles to

these observations (as quantified by the ratio of the target distribution to the proposal distribution). The

method that we use here to update the weight of particles is based on the condensation algorithm [30, 32],

in which the weight of each particle is updated at each observation time by multiplying it by the likelihood

of observing the observed data given the state of that particle at that point in time. Following [93], and our

previous success in applying this approach for previous transmission models [33, 15, 94], we assume that the

likelihood distribution is characterized by a negative binomial distribution:

P (yt|it) =

(
yt + r − 1

yt

)
pyt(1− p)r (4.1)

where p = it
it+r

, r is a dispersion parameter, yt is the model observation (number of incident cases reported

for time t), and it is the incident case count recorded over a scenario-specific interval.

The objective of this study was to apply particle filtering to predictive models of emerging communicable

diseases, which are often built in the presence of limited information about underlying parameters. In light

of the growing availability of epidemiological data streams, we seek here to investigate the impact on model

accuracy of varying the inter-observation interval, studying the tradeoff between pursuing more frequent but

more noisy sampling and less frequent but more stable estimates. We further examine the robustness of the

particle filter to different assumptions concerning behaviour change and assumptions regarding observational

error.
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4.2 Methods

We formulated a transmission model for an influenza-like disease in a classic compartmental fashion and used

it with the SMC method of particle filtering. The dynamic model includes the same states as the model

presented in 3. Given that the R state includes not just those who are recovered, but also those who are now

fully protected via vaccination, we called them “Removed” rather than “Recovered” in the model presented

in this chapter. Thus the model includes Susceptible (S), Exposed (E), Infective (I), Removed (R), and

Vaccinated (V) stocks (Fig. 4.1). It bears noting that the Vaccinated state represents a transient set of

individuals who have received the vaccine but have not yet attained immunity; upon achieving immunity,

such individuals transition to the Removed state. The aggregate compartmental state equations describing

the model stocks are the same as compartmental state equations described in 3.

Figure 4.1: Transmission model

In our model, each particle is associated with a complete copy of model state, including the state of two

evolving parameters of the model: contact rate (c) and fraction of reported incidents (f) fI accounts for

fractional actual reporting, which are associated with evolving state variables whose values can be sampled by

particle filtering. Thus, each particle is associated with a vector of model states [S,E, I,R, V, c, f ]. Following

[33, 93], a negative binomial distribution is assumed to link the observed incident case count for a specified

time period to the underlying count of individuals emerging from latency in the model. We preferred a

negative binomial distribution over the binomial distribution due to the robustness of negative binomial

distribution for the particle filtering methodology [33]. It particularly avoids the risk of a situation in which

all particles are associated with zero weights, causing a singularity during weight re-normalization. As the

model runs and learns from the empirical data over time, the particles associated with the stocks that exhibit

the greatest fitness – in terms of explaining the observed data – survive, are replicated and henceforth evolve

independently.
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This work builds on previous work by Osgood and Liu evaluating particle filtering against ground truth

from an agent-based model [33] and our previous work evaluating particle filtering in terms of its ability to

predict future reported real world prevalence in the absence of a ground truth model [15]. In this work, we

seek to examine the impact on model predictive accuracy of the inter-observation interval of empirical data,

and the robustness of ranges of plausible values for the dispersion parameter and the parameters associated

with the random walk associated with c and f . Such variations are examined for a number of different

observation points during the outbreak.

The prediction of particle filtering was evaluated against empirical data publicly available from Manitoba

Health, Healthy Living and Seniors, which included daily confirmed cases of pandemic H1N1 for the period

of October 6th, 2009 through January 4th, 2010. To judge the deviation of particle filtering prediction from

observations, we defined the discrepancy metric as the expected value of the L2 norm of the difference between

sampled particles. We sampled n particles (n=1000). Given that several dozen samples is often viewed as

the minimum number to reliably estimate a sample mean, 1000 was judged to be well sufficient to capture

a narrow distribution in the mean discrepancy. The discrepancy value was obtained from the collection of

such sampled particles using the following equation:

discrepancy =

∑Tf

i=T∗+1(
∑n

j=1(x
P
ij−x

E
i )2

n )

Tf − T ∗
(4.2)

where xPij is the expected sample associated with sampled particle j at observation i, xEi is the respective

empirical data at observation i. Tf is the end time being set equal to 91 and T ∗ indicated the time t up to

which the particles weights were updated based on observation, where 0 ≤ t ≤ T ∗. In other words, the data

before and equal to this time was taken into account for particle filtering based on the observed data; after

time T ∗, particle weights were no longer updated using the empirical data, no further re-sampling occurred,

and we evaluated how well particle filtering predicted the remaining empirical data.

4.2.1 Parameter values

Initial values:

We set the initial value of Susceptible and Removed stocks based on sampling from a truncated normal

distribution instead of considering the initial values as a static number. Figure 4.2 gives curves for Susceptible

and Removed stocks. Detailed information about initial values is provided in Appendix B.

Contacts per unit time (c):

In this work, particle filtering contributes to the estimation of this dynamic parameter over time through

particle selection. This parameter – which carries a non-negative value – is log transformed, with the loga-

rithm evolving stochastically according to an (unbounded) zero-mean Gaussian random walk with standard

deviation (γ). This is characterized according to the notations of Stratonovich stochastic differential equa-
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Figure 4.2: Progress of susceptible and removed stocks over time, initializing with a range of values.

tions in 4.3. The term dWt at the right side of equation 4.3 is a standard Wiener process following a normal

distribution with mean of 0 and variance of 1 [95], which leads d(ln(c))
dt in any infinitesmal interval to follow

an independent draw from a normal distribution with mean of 0 and variance of γ2. High values of γ allow

the contact rate to evolve more quickly, while low values of γ would be associated with the assumptions of

comparatively slow changes in contact rate. In this work, we examined model behavior over a wide range

of γ to identify appropriate ranges for this important parameter. The initial value of the stock associated

with the logarithm of c is set to the logarithm of the uniform distribution on the interval between minimum

contacts per day and maximum contacts per day which have been considered as 1 and 300, respectively (4.4).

d(log c) = γ dWt (4.3)

(log c)|t=t0 = ln (U(cmin, cmax)) (4.4)

Fraction reported incidence:

The other stochastic parameter included here represents the fraction of reported incidents (f). The fraction

of people who present for care (and are reported to public health authorities) when emerging from the latent

state is an uncertain value. It is also likely to evolve according to risk perception on the part of the population

and provider perception of the importance of reporting. As for c, we considered (a transformed value of)

this parameter as a state of the model and thus associated each particle with a value for this parameter. We

considered the transformed version of this parameter as evolving according to a zero-mean gaussian random

walk with a standard deviation given by a parameter (η). Since f is a fraction varying between 0 and 1,

the (unbounded) random walk was conducted on the logit of this parameter (4.5, again shown according to

Stratonovich calculus notation) which was itself the aspect of model state and the initial value of this state is

set to the logit of fraction reported incidence sampled from a continuous uniform distribution on the interval

between 0 and 1 (4.6). As for c, we have examined stochastics for this parameter to induce variability among

particle trajectories, both to let these quantities evolve during outbreaks, and to provide requisite variability

in particles to allow for the existence of considerably “fitter” particles.
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d(logit(f)) = d(ln(
f

1− f
)) = η dWt (4.5)

(logit f)|t=t0 = logit (U(0, 1)) (4.6)

The other parameters of the model are considered as static and are shown in Table 1.

Variable name Notation Value Source Units

Probability of infection trans-

mission given exposure

β 0.06 Expert opinion Unit

Mean time to recovery µ 7 [69] Day

Vaccine effectiveness b 0.9 [68] Unit

Mean time taken for antibod-

ies to develop

va 14 Expert opinion Day

Total population size N 1214403 [73] Person

Mean latent time τ Uniformly distributed (2, 4) [69] Day

Vaccination rate a Extracted from empirical

vaccinated percentage

1/Day

Table 4.1: Table showing parameters

4.3 Scenarios

We formulated a set of scenarios to explore how the error associated with the particle filtered model predictions

would respond to changes in the total period for which empirical data was available to the model (T ∗), the

frequency of and degree of aggregation associated with empirical data observations supplied to the model,

contact rate volatility parameter (γ) and dispersion parameter (r).

Adequacy of empirical data (T ∗)

We examined the impact of the particle filter on model predictive accuracy at various time points during the

progression of an outbreak. This simulated a situation in which a health authority is partway through an

outbreak and can only take into account data observed until this point when making predictions for coming

weeks. Specifically, in each scenario, particle filtering used data from the start of the outbreak up to and

equal to a time T ∗; the accuracy of particle filter was then evaluated in predicting the data for all times after

T ∗. We considered T ∗ equal to 35, 42, 49, and 56, equivalent to predictions made at 5, 6, 7 and 8 weeks into

the outbreak.
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Inter-observation aggregation interval / Frequency of data observations

Clinically observed data commonly contains noise, for example, due to errors introduced by measurement

tools and random errors introduced by processing or by clinical experts when the data is gathered. As

a result, there is a trade-off between employing more frequently observed (but less aggregate) data and

reducing the noise associated with each data point via observations that are aggregated over longer periods

of time. Employing more frequent sampling – by using shorter time intervals between observations – yields

more numerous data points, but each such datum will typically exhibit greater proportional variability. By

contrast, employing less frequent sampling during training (thereby aggregating data over a longer period

between observations) leads to fewer but proportionately less noisy individual data points. To examine

the impact of the frequency of data observations on filtered model accuracy, we investigated the impact of

aggregating empirical data used in particle filtering observations at three levels. First, we considered daily

data i.e., the number of people clinically confirmed as infected per day to update the particles weights during

particle filtering. Because the original data source specifies data on a daily basis, no further aggregation was

required for this case. Second, data was aggregated over three days for the purposes of particle filtering.

In the third and final alternative setting, the particle filtering used data aggregated on a weekly basis. It

should be emphasized that such aggregation affected only the model observations, and not the calculation of

discrepancies between model results and empirical data.

Random walk standard deviation parameter (γ)

To explore the changes in contact per unit time patterns during an outbreak, and its effect on the spread of

infection, we performed particle filtering using alternative values for the contact rate variability parameter

(γ). In order to explore a broad dynamic range, we examined parameter values at successive powers of two

of the smallest value: 0.125, 0.25, 0.5, 1, 2, 4 and 8.

Dispersion parameter (r)

The ability of particle filtering to project incident case counts is sensitive to the dispersion parameter value

associated with the negative binomial distribution. Increasing the dispersion parameter makes the nega-

tive binomial distribution tighter, while retaining the same mean value [96]. We compared the discrepancy

resulting from running the model with alternative values of the dispersion parameter to developing an under-

standing as to how this parameter affects predictive accuracy. To ensure the comparability of scenarios when

running the models using three-day and weekly observations, we considered the r parameter respectively

three times and seven times as great as the r that we used when observing daily data. This linear scaling of

the dispersion parameter r with sampling period reflects the fact that as the inter-observation interval rises,

the likelihood function is operating with observed values for incident case counts that are correspondingly

larger, and the resulting dispersion would also be expected to scale in the same way. To identify the way in
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which model discrepancy changes with the dispersion parameter, and to identify the dispersion parameter

that offers the greatest accuracy, we ran scenarios considering different values of this parameter. Values 1,

2, 4, 8, 16 and 32 were examined for experiments regarding the daily scenario, while values 3, 6, 12, 24,

48 and 96 were used for three-day experiments and values 7, 14, 28, 56, 112 and 224 were used for weekly

experiments.

Statistical analysis discrepancy results

To provide an objective assessment of the differences in discrepancy associated with each of the variables

considered in the above scenarios, we employed Box-Cox multivariable regression analysis [97]. Box-Cox

analysis was selected rather than traditional multiple linear regression as the discrepancy results were not

normally distributed and routinely used transformations did not adequately address the assumptions of

normality or homogeneous variance. The adequacy of empirical data (T ∗), inter-observation interval or

frequency of data observations, contact rate random walk standard deviation parameter (γ), and dispersion

parameter (r) were evaluated as categorical variables as none of the parameters appeared to have a linear

association with discrepancy based on data visualization exercises and there was also interest in understanding

the specific differences among the chosen parameter values. Differences with p values < 0.05 were considered

statistically significant.

Results

Figure 4.3: Log of discrepancy vs. log of sampling period for different observation times (r=32, γ=
0.125).

On the basis of running the model using daily, accumulated three days and accumulated weekly empirical

data, particle filtering observing daily data performed consistently and markedly better than while observing

three-day and weekly data. Particle filtering using successively larger sampling periods yielded super-linearly

higher levels of discrepancy (Fig. 4.3, Table 4.2, 4.3 and 4.4). The exact difference in discrepancy between
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sampling periods varies by the amount of data available (as given by T ∗), but consistently the discrepancy

extending from particle filtering using daily data was orders of magnitude smaller than for the larger sampling

periods. Tables showing the discrepancy of particle filtering predictions in frequency scenarios for different

observation times and γ = 0.125 and γ = 2 are included in Appendix C. The observed super-linear scaling

of error with inter-observation interval was similar when comparing three day vs. weekly sampling.

Frequency scenarios (γ =

0.25)

T ∗ = 35 T ∗ = 42 T ∗ = 49 T ∗ = 56

PF using daily data, r=2 380 225 69 0

PF using three-day data, r=6 11453 5667 1646 205

PF using weekly data, r=14 80850 39578 6291 482

PF using daily data, r=8 384 213 29 0

PF using three-day data, r=24 14044 6452 1249 79

PF using weekly data, r=56 104043 42248 5484 447

PF using daily data, r=32 230 196 45 0

PF using three-day data, r=96 13617 4701 1096 86

PF using weekly data, r=224 149164 39232 4945 250

Table 4.2: Discrepancy of particle filtering predictions in frequency scenarios for different observation
times and γ = 0.25

Frequency scenarios (γ = 0.5) T ∗ = 35 T ∗ = 42 T ∗ = 49 T ∗ = 56

PF using daily data, r=2 474 270 80 0

PF using three-day data, r=6 13038 6577 1637 128

PF using weekly data, r=14 97325 38652 6661 592

PF using daily data, r=8 337 230 66 0

PF using three-day data, r=24 14900 6482 1264 67

PF using weekly data, r=56 126163 43288 5761 418

PF using daily data, r=32 635 188 13 0

PF using three-day data, r=96 13868 4590 766 44

PF using weekly data, r=224 156099 45808 4231 277

Table 4.3: Discrepancy of particle filtering predictions in frequency scenarios for different observation
times and γ = 0.5

After accounting for differences across all of the examined scenarios for the adequacy of empirical data

(T ∗), random walk standard deviation parameter (γ), and dispersion parameter (r), the average discrepancy

was significantly greater for data collected over three-day (p < 0.001 ) and seven-day (p < 0.001 ) intervals

than for daily data.

40



Frequency scenarios (γ = 1) T ∗ = 35 T ∗ = 42 T ∗ = 49 T ∗ = 56

PF using daily data, r=2 3327 695 87 0

PF using three-day data, r=6 43931 12590 1630 39

PF using weekly data, r=14 645037 154916 16362 976

PF using daily data, r=8 1568 241 18 0

PF using three-day data, r=24 35024 6251 682 4

PF using weekly data, r=56 1216215 129467 6072 376

PF using daily data, r=32 904 104 5 0

PF using three-day data, r=96 25452 4199 393 0

PF using weekly data, r=224 1243398 129629 4580 254

Table 4.4: Discrepancy of particle filtering predictions in frequency scenarios for different observation
times and γ = 1

Frequency scenarios Discrepancy

Without PF using daily

data

101942842

Without PF using three-

day data

386532229

Without PF using weekly

data

575977188

Table 4.5: Discrepancy without particle filtering in frequency scenarios

The effect of the standard deviation for the random walk in the log of the contact rate (γ) also exhibited

pronounced scaling patterns. Plotting three dimensional surfaces to represent the change of discrepancy in

terms of this parameter γ and dispersion parameter r, we observed that for all daily, every-three-day and

weekly scenarios, a γ parameter in the range of 0 to 2 yields markedly reduced discrepancy compared with

γ values above 2 (Fig. 4.4, 4.6, 4.7 and 4.8). After accounting for differences across all of the examined

scenarios for the frequency of data collection, adequacy of empirical data (T ∗), and dispersion parameter (r),

the average discrepancy was significantly greater for random walk standard deviation values of 4 (p < 0.001)

and 8 (p < 0.001) compared to the baseline value of 0.125. However, there was no significant difference

between random walk standard deviation values of 0.25 (p=0.97), 0.5 (p=0.99), 1 (p=0.97), or 2 (p=0.42)

and the baseline random walk standard deviation of 0.125.

Figure 4.5 presents the discrepancies from particle filtering for different values of standard deviation asso-

ciated with fraction reported incidence parameter (η). It appears that a System Dynamics model combined

with particle filtering to learn from empirical data behaves robustly to changes in η for daily, every-three-day

and weekly scenarios. The value for η was set to 1 for all of the scenarios reported in this work.
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Figure 4.4: Discrepancy versus random walk standard deviation using daily, three-day and weekly
observations (T ∗ = 35 and r = 32 for daily, 96 for three-day, and 224 for weekly observations)

As shown in figures 4.9 and 4.10, results suggest that increasing the dispersion parameter does not appear

to strongly affect the performance of particle filtering at smaller values of contact rate random walk standard

deviation parameter (γ). However, at larger values of γ, the impact of the dispersion parameter become more

apparent (Fig. 4.6, 4.7 and 4.8). After accounting for differences across all of the examined scenarios for the

frequency of data collection, adequacy of empirical data (T ∗), and the contact rate random walk standard

deviation parameter (γ), the average discrepancy was significantly smaller for each increasing dispersion

parameter (r) from 1 to 32 (p < 0.001) as compared to the baseline value of 1.

Table 4.5 shows the discrepancy for the model without particle filtering. The discrepancy for particle

filtering scenarios was found to be less than the discrepancy associated with the model without particle

filtering.

4.4 Discussion and Future Work

The particle filtering method explored here offers considerable potential. The value offered by this approach

seems likely to be particularly pronounced when used in the context of emerging communicable diseases in

which limited parameter information is available to inform available models, but where frequent (e.g., daily)

reporting of case counts are available. Particle filtering supports an adaptive response updating the current

state and stochastic parameter values involved in dynamic models. In this way, the models are kept current

with the latest evidence, which can be used to predict forward and to be used to then anticipate possible

trade-offs between interventions. The key finding in this work is that particle filtering can perform orders

of magnitude more accurately in case the daily clinical reports are available. For public health authorities

seeking to employ accurate projection systems for communicable disease outbreaks, this finding suggests a
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Figure 4.5: Discrepancy versus fraction reported incidence standard deviation using daily, three-day
and weekly observations (T ∗ = 35, γ = 0.125 and r = 32 for daily, 96 for three-day, and 224 for weekly
observations)

premium on putting in place efficient reporting schemes.

A second set of findings relates to the high robustness of preferred particle filtering parameter assumptions

as we change the observation time in the outbreak and the inter-observation interval. While the assumption

made for dispersion parameter associated with the negative binomial likelihood formulation does exert some

impact on the accuracy of particle filtering, the results are far less sensitive to variations in this parameter

beyond an inter-observation interval specific threshold. By contrast, while the results are highly sensitive

to the assumptions regarding the rate of potential evolution of contacts per unit time (γ), the findings

across different inter-observation intervals and time of observation are consistent in suggesting a specific

range of low values for this parameter. While the particulars of these values are likely to differ somewhat

for distinct epidemiological contexts (e.g., pathogens), populations and types of data, the consistency of

these results suggests the potential for simpler guidelines to govern the application of particle filtering in

specific epidemiological contexts. Importantly, given this robustness and daily reporting, these results suggest

favorable starting assumptions for application of this approach to similar pathogens in developed countries.

For different epidemiological contexts, the robustness of the results also suggest that a much simpler variant

of the methodology used here might be applied in the opening days and weeks of an outbreak to estimate

favorable parameter values for the dispersion parameter and rate of contact rate evolution for that particular

context.

Research progress is needed to adequately realize particle filtering on other types of models, including

agent-based and discrete-event models [98]. Since these modeling techniques are widely used in public health,

and since implementing particle filtering in the presence of these types of models is not as straightforward
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(a) Random walk standard deviation in the range of
[0.125-8]

(b) Random walk standard deviation in the range of
[0.125-2]

Figure 4.6: Discrepancy in terms of dispersion parameter and random walk standard deviation –
daily empirical data and T ∗ = 42

due to software limitations, advances are urgently required to improve software support for particle filtering

for such models.

4.5 Conclusion

The findings presented here demonstrate that in the presence of simple models, particle filtering in combina-

tion with dynamic models can develop accurate predictive systems in the context of emerging communicable

diseases, particularly when models lack information about parameters, but frequent reporting of empirical

data is available. The results suggest that more frequent sampling improves predictive accuracy remarkably.

The robustness of particle filtering in this case study also suggests that it may be possible to apply a variant

of the method presented here to estimate unknown parameters of an emerging outbreak – specifically a new

pathogen that is not well-known – in its opening days and weeks. According to the findings in this work,

even very rough models can be combined with particle filtering to project the evolution of emerging infectious

diseases and secure strong guidance for health policy makers.
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(a) Random walk standard deviation in the range of
[0.125-8]

(b) Random walk standard deviation in the range of
[0.125-2]

Figure 4.7: Discrepancy in terms of dispersion parameter and random walk standard deviation
empirical data available every three-days and T ∗ = 42

(a) Random walk standard deviation in the range of
[0.125-8]

(b) Random walk standard deviation in the range of
[0.125-2]

Figure 4.8: Discrepancy in terms of dispersion parameter and random walk standard deviation
weekly empirical data and T ∗ = 42
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Figure 4.9: Discrepancy versus dispersion parameter using daily, three-day and weekly observations
(T ∗ = 42 and γ = 0.125

Figure 4.10: Discrepancy versus dispersion parameter using daily, three-day and weekly observations
(T ∗ = 35 and γ = 0.125)
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Chapter 5

Social Media Surveillance Improves Outbreak Pro-

jection via Transmission Models

The text of this chapter is largely drawn from a manuscript entitled “Social Media Surveillance Improves

Outbreak Projection via Transmission Models” by Anahita Safarishahrbijari and Nathaniel D Osgood, sub-

mitted to the Journal of Medical Internet Research. Authors’ contributions are described in 1.

While dynamic models are increasingly used by decision makers as a source of insight to guide interventions

to control communicable disease outbreaks, such models have long suffered from a risk of rapid obsolescence

due to a failure to keep updated with emerging epidemiological evidence. The application of statistical

filtering algorithms to high-velocity data streams has recently demonstrated effectiveness in allowing such

models to be automatically re-grounded by each new set of incoming observations. The attractiveness of such

techniques has been enhanced by the emergence of a new generation of geospatially specific, high-velocity

data sources, including daily counts of relevant searches and social media posts. The information available

in such electronic data sources complements that of traditional epidemiological data sources.

This chapter seeks to evaluate the degree to which the predictive accuracy of pandemic projection models

re-grounded via machine learning in daily clinical data can be enhanced by extending such methods to

leverage daily search counts.

We combined a previously published influenza A (H1N1) pandemic projection model with the sequential

Monte Carlo technique of particle filtering so as to reground the model on a daily basis using confirmed

incident case counts and search volumes. The effectiveness of particle filtering was evaluated using a norm

discrepancy metric via predictive- and dataset specific- cross-validation.

Results suggested that despite the data quality limitations of daily search volume data, the predictive

accuracy of dynamic models can be strongly elevated by the inclusion of such data in filtering methods.

The predictive accuracy of dynamic models can be notably enhanced by tapping a readily accessible, publi-

cally available high-velocity data source. This work highlights a low-cost, low-burden avenue for strengthening

model-based outbreak intervention response planning using low-cost public electronic datasets.
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5.1 Introduction

The capacity to accurately project communicable disease outbreak evolution is of great value in public

health planning prevention and control activities. Use of such information can inform resource allocation,

including surge-capacity planning and planning of the timing of outbreak response immunization campaigns,

and – when applied across distinct scenarios – provides a basis for evaluating tradeoffs between intervention

strategies. While dynamic models are increasingly widely used to conduct such scenario projection, the

construction of such models for new and rapidly evolving pathogens commonly faces significant barriers due

to uncertainties regarding important factors governing the natural history of the disease, such as durations of

latent, incubation and infectious phases, the probability of asymptomatic carriage, rates of waning immunity,

contact rates and per-discordant-contact transmission probabilities. Moreover, even the most intricate models

face strict limitations in their ability to project evolution of factors treated as stochastic, such as weather-

related variables and the timing of arrival of exogenous infections due to global travel. Using computational

statistical estimation methods such as sequential Monte Carlo techniques, researchers have in recent years

contributed approaches to elevate the predictive accuracy of dynamic transmission models by updating their

state estimates at the time of appearance of each new observation. The predictive accuracy of methods have

thus far been evaluated purely in the context of models which make use of traditional surveillance datasets,

such as laboratory and clinically confirmed case reports [61, 31, 33, 15, 16, 94].

While such traditional surveillance datasets offer high-quality, rich information concerning individuals

who present for medical care, they suffer from notable shortcomings, including delayed reporting and a

failure to include counts of infective individuals who elect not to present. In a separate stream of work

from the dynamic modeling work noted above, researchers have in recent years sought to compensate for the

limitations of traditional epidemiological data sources more generally by exploiting information related to

online communicational behavior, and particularly the growing tendency of many users to search, post, and

tweet about their illnesses. Specifically, such researchers have assessed the health insights that can be gained

from public health surveillance applications employing a variety of online sources of information.

A prominent line of this work has focused on time sequences of search query volumes, such as those

previously captured in Google Flu Trends (GFT) [3] and (on a more generic and continuing basis) Google

Trends [2]. Within this sphere, a wide variety of investigations have utilized statistical and machine learning

methods to perform classification and analysis on such Google search volume data and volumes of social media

postings, including for communicable illnesses. Many researchers have investigated biomedical and health

related knowledge obtained from twitter platform, suggesting the opportunities and limitations associated

with different machine learning classifiers and training models for tweet mining [99, 80, 100]. Other case

studies have reported significant correlation between Tweets and clinical reports and concluded that social

media text mining can improve public health communication efforts by providing insight into major themes

of public concerns in the health sphere [101, 102].
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An important subset of research in this area has leveraged data obtained from Google to develop statistical

forecast models and evaluated the degree to which GFT data in combination with statistical models can

support accurate predictions [52, 53, 54] and correlation with real time empirical data [55]. Some investigators

jointly used multiple data sources, including GFT and Twitter, and compared the performance of statistical

prediction models using each data source and also in scenarios where different data sources complement one

another [56, 57].

The prediction of epidemic outbreaks by dynamic models often involves significant error and generally

needs to consider both underlying dynamics and noise related to both measurement and process evolution.

While older techniques based on Kalman Filtering and variants [87] have long provided a computationally

frugal means of filtering stochastic dynamic models, such MLE-based approaches are impaired by strong

distributional assumptions concerning measurement and process noise, and limited accommodation for non-

linearity in the system being characterized. This challenge in handling non-linearity is felt most keenly in

terms of an inability to capture the effects of probability distributions across multiple basins of attraction,

and a requirement for model linearization that is problematic for important modeling formalisms, such as

agent-based models. For these and other reasons, recent researchers have increasingly turned to stronger

filtering methods. Several authors have applied the sequential Monte Carlo (SMC) technique of particle

filtering (PF) as an effective tool in support of both model estimation and predictions from real world

data. Ong et al. established a real-time surveillance system in Singapore to feed data into a stochastic

model of influenza-like disease dynamics, which was refitted daily using PF [61]. Osgood and Liu used a

synthetic ground truth model to evaluate the effectiveness of PF for an H1N1-like infection in the presence

of noisy data and systematic model simplifications [33]. Safarishahrbijari et al. evaluated the effectiveness

of PF subject to specifics of the configuration, such as frequency of data sampling and representation of

behaviour change in the form of an evolving contact rate for H1N1 [15, 16]. Oraji et al. developed a system

dynamics model for studying the tuberculosis transmission, and applied PF to estimate the latent state of the

system, including many epidemiological quantities that are not directly measured. Their results suggested

an improvement of model accuracy using PF and high additional value extending from consideration of

additional epidemiological quantities in the probabilistic model [94]. Li et al. applied particle filtering to

a measles compartmental model using reported measles incidence for Saskatchewan. They also performed

particle filtering on an age structured adaptation of their model by dividing the population into children

and adults age-groups. According to their results, particle filtering can offer high predictive capacity for

measles outbreak dynamics in a low vaccination context [103]. The literature characterized in this paragraph

indicates that, when used with a suitable dynamic model, particle filtering can offer high predictive capacity

for contagious diseases and outbreaks; however, none of these works have used data extracted from online

communicational behaviour time series such as those available via GFT, and the underlying models do not

consider the transmission of fear between individuals.

Epstein et al. explored the effect of adaptive behaviors such as social distancing based on fear and contact
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behaviour in models of epidemic dynamics [14]. They used nonlinear dynamical systems and agent-based

computation and integrated disease and fear of the disease contagion processes. Based on their models,

individuals anxious (“scared”) about or infected by a pathogen can transfer fear through contact with other

individuals who are not scared, and scared individuals may isolate themselves, which affects the contact

rate dynamic, which is a key parameter in governing outbreak evolution. The authors studied flight as a

behavioral response and concluded that even small levels of fear-inspired flight can have a dramatic impact

on spatio-temporal epidemic dynamics [14].

Despite the fact that both high velocity search volume and social media data and transmission models

share a temporal perspective, data drawn from such internet series has not to our knowledge been previously

used as a source of information for filtering (via recurrent re-grounding) compartmental transmission models

with the arrival of new data.

In this chapter, we sought to address that gap by combining the transmission model from [14] with the

sequential Monte Carlo method of particle filtering, considering the interaction between disease and fear of

disease contagion processes for the 2009-2010 H1N1 influenza pandemic. The particle filtered model used

time series of both clinically-observed data and daily Google search query volumes to automatically and

recurrently re-ground the model as successive data points became available. Based on lessons learned from

[15, 16] as to the importance of incorporating higher-velocity rather than time-averaged data, we made use

of daily data. In contrast to past PF work grounding transmission models that have used empirical data

purely as a comparison with model results reflecting the natural history of infection, the model presented

here engaged in such comparisons for the clinical data, but further compared the search query volume data

with ideation-related model state (individuals with fear).

5.2 Methods

5.2.1 Particle Filtering Model

As the first stage of characterization of the particle filtered model, we first present the formulation of the

existing Epstein compartmental model from [14], which characterizes the population into states according to

both their natural history of infection and presence of anxiety regarding influenza. The state variables of the

model are as follows: Susceptible to pathogen and fear (S), Infected with fear (in fear) (IF ), Infected with

pathogen (IP ), Infected with pathogen and in fear (IFP ), Removed due to fear (RF ), Removed due to fear

and pathogen (RFP ) and Recovered (R). We used an adaptation of the model that included an Exposed (E)

state variable (Figure 5.1). In this model, λF is the (hazard) rate of removal due to self-isolation of those in

fear only, λP refers to rate of recovery from infection with pathogen and λFP represents rate of removal due

to self-isolation of infected who are also afraid, while H is the rate of recovery from fear (alone) and return

to circulation [14].

The parameters α and β denote transmissibility of fear and pathogen, respectively. Specifically, α rep-
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resents the probability that a contact between an individual A who is currently without fear but who is

susceptible or infected purely with pathogen and an individual B with either fear or pathogen will cause

individual A to grow afraid. By contrast, β denotes the probability that a contact between an individual

A who has never been infected with pathogen and an individual B specifically infected with pathogen will

infect individual A with pathogen. Given that α and β are probabilities (and are thus of unit dimension), it

bears emphasis that simple dimensional analysis demonstrates that the original authors assume an effective

per-person-per-unit time mixing rate holding a value of unity. While not considered within the scope of

the original article, this mixing rate can itself be characterized in accordance with longtime mathematical

epidemiology practice as the product of a per-unit-time contact rate c and disease transmissibility divided

by the (constant) total population N . Because we consider changes to the value of c within this work, this

quantity is shown explicitly in the equations below. To explain this term required for dimensional consistency,

we note that each transmission term (such as βα c
N c IFP ) can be considered as characterizing the rate of

transmission (in terms of persons per unit time) from possible transmitters in category Y (here, IFP ) to

persons in at-risk category X (here, S). Each such at-risk person X is assumed to engage in an average

of c contacts per unit time. Those overall contacts are then assumed to be spread proportionally among

the compartments in the population, with the fraction taking place with those in a category Y of possible

transmitters being the count of people in Y divided by the total population N . The probability in the prefix

of the term (here, β α) indicates the probability that each such potentially-transmitting contacts does in fact

lead to the type of transmission being considered in that term (either fear, pathogen, or, as in this example,

both).

In adapting the model, we took advantage of the previously demonstrated [15, 16] capacity of particle

filtering to support stochastic evolution of designated parameters (captured as state variables). One of

the stochastic parameters included in this model represents the fraction of reported incidents (fP ). This

represents the fraction of people who are reported to public health authorities when emerging from the latent

state, and is a value that is both uncertain and evolving over time. Likewise, the fraction of people becoming

afraid who search Google upon infection – named the fraction of Google search incidents (fF ) – is further

treated as a dynamic uncertain parameter.

Other parameters also treated as stochastic are the contact rate (c), removal rate from those with fear to

self-isolation (γF ) and removal rate from those with fear who are also infected (γFP ). To support this, such

dynamic parameters are associated with state variables evolving over time according to stochastic differential

equations. Because variable c is a non-negative quantity, we performed a log-transform on this variable

according to the Brownian Motion, so that it varied over the full real numbers. The stochastic differential

equation of contact rate c is described using Stratonovich notation as:

d(ln(c)) = γ dWt (5.1)

where dWt is a standard Wiener process following a normal distribution with mean of 0 and variance of
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1 [95]. Thus, d(ln(c)) is is subject to Gaussian perturbations. We also performed a log-transform on λF ; the

stochastic differential equation of λF is formulated in Stratonovich notation as:

d(ln(λF )) = sλF
dWt (5.2)

The initial value of c and λF is drawn uniformly from the interval between 0 and 100 per day and between

0.4 and 1 per day, respectively. The standard deviation of γ and sλF
were both selected to be 1. By contrast,

reflecting the fact that fP and fF represent fractions, such parameters were logit-transform, with the initial

value for each varying between 0 and 0.2. We described the stochastic differential equations of fractions fP

and fF according to Brownian Motion as the following, again following Stratonovich notation for each:

d(logit(fP )) = d(ln(
fP

1− fP
)) = η dWt (5.3)

d(logit(fF )) = d(ln(
fF

1− fF
)) = sfF dWt (5.4)

Within the model, the parameter fP is multiplied by inflows to state variables Infective (I) and Scared

Infective (IFP ) to account for fractional actual reporting. Similarly, the parameter fP is multiplied by

inflows to state variables Scared (IF ), Scared Infective (IFP ), Removed due to Fear and Infection (RFP ) and

Removed due to Fear (RF ) accounts for the fractional actual scared population.

We treated γFP as 1
meanlatenttimetorecovery×λ′FP

and then considered λ
′

FP as a fraction and performed a

logit-transform on it. This parameter varies over the range from 0 to 1 and the dynamic process for λ
′

FP is

similar to fP and fF , specifically:

d(logit(λ
′

FP ))

dt
=
d(ln(

λ
′
FP

1−λ′FP

))

dt
= sλ′FP

dWt (5.5)

The standard deviations η, sfF and λ
′

FP are selected to be 5, 5 and 1, respectively. The initial values of

fP , fF and λ
′

FP are set on the intervals [0, 0.2), [0, 0.2) and [0, 0.5), respectively.

By applying random walks to these parameters, a more accurate estimate was achieved during model

simulation. As such, in our model, each particle at each point in time is associated with all state variables

and state variables associated with stochastic parameters (S,E, IF , IP , IFP , RF , RFP , R, c, fP , fF , λF , λ
′

FP ).

dS

dt
= −β(1−α)

c

N
SIP −(1−β)α

c

N
SIP −βα

c

N
SIF −β(1−α)

c

N
SIFP −(1−β)α

c

N
SIFP −βα

c

N
SIFP (5.6)

dS

dt
= β(1− α)

c

N
SIP + β(1− α)

c

N
SIFP −

E

τ
(5.7)

dIP
dt

=
E

τ
− αIP IP − αIP IF − αIP IPF − λP IP +HRPF (5.8)
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Figure 5.1: Coupled contagion dynamics of fear and disease
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c

N
IP IP+α
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N
αIP IFP−λP IFP−λFP IFP

(5.10)

dRF
dt

= λF IF −HRF (5.11)

dRFP
dt

= λFP IFP − λ
′

PRFP −HRFP (5.12)

dR

dt
= λP IP + λP IFP + λ

′

PRFP (5.13)

5.2.2 Description of Data Sources

We evaluated the prediction of the above-described dynamic model assisted by particle filtering against two

publicly available empirical datasets. The first was from Manitoba Health, Healthy Living and Seniors and

included daily laboratory-confirmed case counts of pandemic H1N1 influenza for the period of October 6th,

2009 through January 18th, 2010 for the province of Manitoba [58]. The second dataset was from the Institut

National de Santé Publique du Québec (INSPQ) – a public health expertise and reference centre in Quebec

– and included daily confirmed case counts of pandemic H1N1 influenza between October 6th, 2009 and

December 19th, 2010 [59].

In addition to the daily clinical case count data noted above, we obtained normalized daily Google search

counts from Google trends and weekly normalized data from Google flu trends for Manitoba and Quebec

during the second pandemic wave. Reflecting the linguistic differences between the two provinces, the search

terms used for each were distinct. In Manitoba, we used search terms “flu” and “H1N1”, while for Quebec,
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we used “flu”, “Influenza A virus sub-type H1N1”, “h1n1 vaccination”, “ah1n1”, “ah1n1 vaccin”, “grippe”

and “grippe ah1n1” categories – the most frequent search queries related to this topic suggested by Google

during that period.

5.2.3 Particle Values and Parameter Values

In defining the likelihood function for observing the empirical data given the state of a given particle, the

exact variant of the likelihood used varied across three different scenarios examined. The first scenario

evaluated the impact of assuming a likelihood formulation that considered purely clinical data, termed

LInfectionwithPathogen. The likelihood being used in the second scenario considered only the likelihood of

observing the empirical data regarding Google search counts for the appropriate province in light of the count

of individuals posited to be currently in fear within the model, a likelihood denoted as LInfectionwithFear.

Following several past contributions [33, 15, 94, 93], we assume that each epidemiological quantity follows

a Pascal distribution function [95]. Thus, given yt and it as representing observed individuals per day and

particle-posited daily rate (count per day) of new cases, respectively,

L(yt|it) =

(
yt + r − 1

r − 1

)
pr(1− p)yt (5.14)

In the formulation for the likelihood function, r is a dispersion parameter and p = it
it+r

.

LInfectionwithPathogen =

(
yPt + rP − 1

rP − 1

)
prPP (1− pP )yPt (5.15)

LInfectionwithFear =

(
yFt + rF − 1

rF − 1

)
prFF (1− pF )yFt (5.16)

where yPt and yFt represent number of lab confirmed incident cases reported for day t and number of

Google search incidents for that day, respectively. The probabilities pP and pF follow
iPt

iPt+rP
and

iFt

iFt+rF
,

respectively; where iPt is a fraction of the flow of new cases of infection and iFt is a fraction of the flow

of new cases of scared. The dispersion parameter LInfectionwithPathogen(rP ) was considered as 40, while

LInfectionwithFear(rF ) was considered as 25. This reflects the larger noise that we believed to be associated

with Google search data, in light of the fact that a larger dispersion parameter leads to a more narrowly

dispersed distribution.

The third scenario considered a total likelihood function Lt consisting of a combination of LInfectionwithPathogen
and LInfectionwithFear. For defining the total likelihood function, the simplifying assumption was made that

deviations with respect to one measure was independent of the other, and thus the total multivariate likeli-

hood function could be treated as a multiplication of two univariate likelihood functions, given as:

LT = LInfectionwithPathogen × LInfectionwithFear (5.17)
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The purpose of running this third scenario was to compare the effectiveness of a univariate likelihood

function with the multivariate likelihood function, when evaluated in terms of a calculated discrepancy of

model predictions against the epidemiologically confirmed case count.

Parameter Notation Value for Quebec Value for Manitoba Unit

Probability of infection transmission

given exposure

β 0.04 0.04 Unit

Probability of fear transmission given

exposure

α 0.02 0.02 Unit

Mean latent time τ Uniformly distributed

(2, 4)

Uniformly distributed

(2, 4)

Day

Mean time to recovery µ 7 7 Day

Total population of province N 7843475 1214403 Person

Rate of recovery from fear H 0.2 0.2 1/Day

Rate of removal to self-isolation from

fear

λF Dynamic Dynamic 1/Day

Fraction of mean time to recovery of

going from “Scared Infected” to “Re-

covered” via “Removed due to Fear &

Infection”

λ
′

FP Dynamic Dynamic 1/Day

Rate of removal to self-isolation from

fear and pathogen

λFP
1

µλ
′
FP

1
µλ
′
FP

1/Day

Rate of recovery from infection with

pathogen

λP
1
µ

1
µ 1/Day

Rate of recovery from removed due to

fear and infection

λ
′

P
1

µ (1−λ′FP )
1

µ (1−λ′FP )
1/Day

Table 5.1: Parameters used in the model

The three scenarios noted above were conducted using particle filtering employing 1000 particles. For

each such scenario, reflective of the need make decisions in light of uncertainty about the evolution of an

unfolding outbreak in which only information about time points up to the present is available, we sought to

examine the impact of right-censoring the empirical data at certain time-point T ∗, representing the current

time (i.e., the time from which the model is forecasting outbreak evolution). Thus, as the model ran, particle

weights were updated based on observations from day one until and including day T ∗; after day T ∗, particle

filtering ceased, particle weights were no longer updated using historic data, and no further particles were

re-sampled. Each scenario included a sequence of sub-scenarios, which employed the following distinct values

of T ∗ : {25, 30, 35, 40, 45, 50}.
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To judge the accuracy of particle filter-informed projections for future times against the standard of the

reported case counts for those times, we defined a discrepancy metric as the expected value of the L2 norm

of the difference between sampled particles (reporting-rate coefficient times the sum of infected and scared

infected states) and reported case count observations calculated after time T ∗. We sampled n particles

(n=700) according to their weights, and obtained the discrepancy value using the following equation:

discrepancy =

∑Tf

i=T∗+1(
∑n

j=1(x
P
ij−x

E
i )2

n )2

Tf − T ∗
(5.18)

where xPij is the value associated with sampled particle j at observation i, xEi is the respective reported clinical

cases at observation i. Tf is the final observation time and T ∗ indicates the time from which the projection

is being made (i.e., the time up to which the particles’ weights were updated based on observation, where

0 ≤ t ≤ T ∗). Using this formulation, we evaluated how well projections forward predicted the empirical data

after T ∗, the time at which particle filtering completed.

5.3 Results

In this work, for each scenario (each associated with a particular likelihood function), we plotted the graphs

associated with T ∗ = 30 for Manitoba and Quebec. We characterize the results below, organized by scenario.

1. Particle filtering using two likelihood functions

Figure 5.2 and Figure 5.3 depict the empirical data (red and magenta points) superimposed on samples

(blue and green) from the model-generated distribution of particles for the model output for the number

of reported cases (left panel) and number of searches (right panel) for Manitoba (Figure 5.2) and Quebec

(Figure 5.3). For T ∗ = 30, the high posterior density (HPD) are for the projection period is quite

localized for cases of pathogen and the number of searches.

2. Particle filtering using the likelihood function associated with clinical data alone.

In this configuration, particle filtering was performed using as the sole likelihood function. Figure

5.4 and Figure 5.5 depict empirical data (red and magenta points) superimposed on samples (blue

and green) from the model-generated distribution of particles for the model output for the number of

reported cases (left panel) and number of searches (right panel) for Manitoba (Figure 5.4) and Quebec

(Figure 5.5). Despite the fact that the particle filtering employs reasonably high resolution clinical

data, the system exhibits great difficulty both in accurately projecting number of clinical case reports

forward from the point where particle filtering ceases (T ∗), and in doing so in a fashion where the HPD

region is localized. Unsurprisingly, the model informed by the reported clinical case counts alone is

unable to accurately characterize the search volume within the population.

3. Particle filtering using the likelihood function associated with search-volume data alone.
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empir-
ical data) and blue depicts the 2D histogram of sam-
ples from the particle filtered model (reported inci-
dence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.2: Empirical data (red and magenta points) superimposed on samples (blue and green) from
the model-generated distribution of particles for the model output for the count of reported cases (left
panel) and number of searches (right panel) using two likelihood functions, T ∗ = 30 for Manitoba.

In this configuration, particle filtering was performed using as the sole likelihood function. Figure

5.6 and Figure 5.7 depict empirical data (red and magenta points) superimposed on samples (blue

and green) from the model-generated distribution of particles for the model output for the number of

reported cases (left panel) and number of searches (right panel) for Manitoba (Figure 5.6) and Quebec

(Figure 5.7) While results for both jurisdictions some localization in the projections of the prevalent

case count of those living in fear, the failure to consider clinical case count in the particle filtering (and

to accordingly update the model estimates for the current number of infectives, susceptibles and the

contact rate) leads to poor projection accuracy for the reported clinical case count.

Figure 5.8 and Figure 5.9 depict the (log-scaled) discrepancies between model clinical case predictions and

empirical data for different check times (T ∗) for Manitoba and Quebec, respectively. Unsurprisingly given the

results above, the discrepancy associated with particle filtering informed by both clinical and search volume

datasets (Scenario 1) is smaller than the discrepancy associated with either dataset in isolation. In addition,

the discrepancy when using particle filtering informed by the (higher-quality) clinical case count data alone is

lower than that informed purely by search volume. However, there is a marked difference between Manitoba

and Quebec in the levels of discrepancy seen when using clinical case data alone vs. with search volume data.

For Manitoba, there is consistently less than an order of magnitude of difference in discrepancies between

these two results. By contrast, for Quebec, using the clinical data alone within particle filtering yields a

level of discrepancy several orders of magnitude below that resulting from search volume data. Intriguingly,

for Manitoba, combining both yields a reduction of discrepancy many orders of magnitude below either,

despite the fact that discrepancy is calculated with respect to clinical case reports. This advantage of adding

information from the search volume data to that from clinical case counts presumably reflects the fact that
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empiri-
cal data) and blue depict the 2D histogram of samples
from the particle filtered model (reported incidence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.3: Empirical data (red and magenta points) superimposed on samples (blue and green) from
the model-generated distribution of particles for the model output for the count of reported cases (left
panel) and count of searches (right panel) using two likelihood functions, T ∗ = 30 for Quebec.

the added search volume information supports particle filtering in more accurately localizing the model state

estimates than was the case using purely the reported clinical case counts – a factor manifested in the

projections for both clinical case counts. By contrast, for Quebec, using both sources of information reduces

the discrepancy significantly, typically by at least one order of magnitude, with the exception of time points

T∗ = 45 and 50.

5.4 Discussion

5.4.1 Principal Results

In this contribution, we investigated the predictive accuracy gains from applying particle filtering using

both traditional and search volume data to estimate latent states of a compartmental transmission model

(including time evolution of stochastic parameters involved in that model). The capacity to perform this

estimation then provides support for projection and scenario evolution using the model.

To be able to use search data effectively when particle filtering a transmission model, we found it helpful

to move beyond the traditional scope of compartmental transmission models and to adopt a more articulated

model of the outbreak, reflecting the fact that causal drivers promoting web searches are not restricted to

stages in the natural history of infection, but are additionally driven by factors with distinct but coupled

dynamics, such as fluctuations in perceived risk on the part of the population. Responsive to this considera-

tion, we have adapted a previously published model with an explicit consideration of the coupled dynamics

of fear and pathogen. While there are challenges associated with assessing perceived risk and anxiety on

the part of the population during an outbreak, we found here that projection of outbreak dynamics can be
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empiri-
cal data) and blue depict the 2D histogram of samples
from the particle filtered model (reported incidence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.4: Empirical data (red and magenta points) superimposed on samples (blue and green) from
the model-generated distribution of particles for the model output for the count of reported cases (left
panel) and count of searches (right panel) using the likelihood function associated with clinical data
alone, T ∗ = 30 for Manitoba.

materially enhanced through the inclusion of a surprisingly accessible source of data: Daily relative search

query volumes for defined geographic regions on the widely used Google search engine.

The reliable and timely public availability of such data across many areas of the world raises the prospects

for significantly enhancing effective outbreak projection using combinations of dynamic modeling and machine

learning techniques such as the particle filter.

5.4.2 Limitations

The work presented here suffers from significant limitations. Although search trend data provides some

indication of topic-specific interest over time in a defined spatial region, from the standpoint of big data, it

is often available only with modest (daily) temporal resolution and frequently coarse geographic resolution.

It is also affected by many unobserved confounders. Such search trend data is further limited by providing

little sense of count of distinct users and no sense of longitudinal progression of a single user. In such regards,

the Google search query volume time series compare unfavourably to the richness of information present in

other publicly available types of online data, such as region-specific twitter feeds.

In addition to shortcomings in the data sources employed, there are notable methodological limitations

of our study. The likelihood function employing two distinct data sources was simplistic in its design, merely

serving to multiply each of the dataset-specific likelihood functions. The use of a random walk during

particle filtering for no fewer than five distinct parameters likely contributes to a rapid divergence in the

model’s estimates, compared to the behaviour observed in the previous particle filtered models of influenza

[15] and [16]. Further experimentation is required with the parameters governing such random walks. More

significant yet, given the limited volatility likely for some of such parameters, a large gain in accuracy may
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empiri-
cal data) and blue depict the 2D histogram of samples
from the particle filtered model (reported incidence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.5: Empirical data (red and magenta points) superimposed on samples (blue and green) from
the model-generated distribution of particles for the model output for the count of reported cases (left
panel) and count of searches (right panel) using the likelihood function associated with clinical data
alone, T ∗ = 30 for Quebec.

come from treating such parameters as unknown constants to be sampled for a given simulation from a

posterior distribution within Particle Markov Chain Monte Carlo (PMCMC) techniques [92].

Such limitations point to natural avenues for future work. We expect that the prospects for the sorts

of projections explored here will be significantly elevated by combining such data with other public data

sources containing distinct sources of information, such as daily or finer resolution time series from Twitter and

Tumblr. We further expect the accuracy of the projections to be improved by more powerful machine learning

techniques, such as through the use of PMCMC techniques, ensemble techniques supporting inclusion of

multiple models, and potentially PMCMC techniques employing multiple models using reverse-jump MCMC

strategies.

5.4.3 Conclusion

Pandemic forecasting is important for public health policy making by virtue of its support for judicious

planning involving resource allocation. Official statistics typically capture only subsets of the epidemiological

burden (e.g., the subset of individuals who engage in care-seeking). Prospects for rapid use of such data to

understand outbreak evolution are often further handicapped by reporting delays and a lack of capacity to

project epidemiological case count time series forward. Traditional outbreak data have been complemented

in recent years by high-resolution datasets from public social media such as Twitter, Tumblr, and time

series provided by the Google search API via Google trends and Google flu trends that can be retrieved

programmatically and analyzed over time. The results presented in this work suggest that, when combined

with traditional epidemiological data sources, social media-drive datasets, machine learning and dynamic
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empiri-
cal data) and blue depict the 2D histogram of samples
from the particle filtered model (reported incidence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.6: 6 Empirical data (red and magenta points) superimposed on samples (blue and green)
from the model-generated distribution of particles for the model output for the count of reported cases
(left panel) and count of searches (right panel) when using the likelihood function associated with
search-volume data alone, T ∗ = 30 for Manitoba.

modeling can offer powerful tools for anticipating future evolution of and assessing intervention tradeoffs

with respect to infectious disease outbreaks, particularly for emerging pathogens.
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(a) Clinical data and particle distribution. Red
markers depict empirical data points (clinical empiri-
cal data) and blue depict the 2D histogram of samples
from the particle filtered model (reported incidence).

(b) Google search-volume data and particle distribu-
tion. Magenta markers depict empirical data points
(Google empirical data) and green depict the 2D his-
togram of samples from the particle filtered model
(search volume).

Figure 5.7: 6 Empirical data (red and magenta points) superimposed on samples (blue and green)
from the model-generated distribution of particles for the model output for the count of reported cases
(left panel) and count of searches (right panel) when using the likelihood function associated with
search-volume data alone, T ∗ = 30 for Quebec.

Figure 5.8: Discrepancies associated with different scenarios and different T ∗ for Manitoba.
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Figure 5.9: Discrepancies associated with different scenarios and different T ∗ for Quebec.
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Chapter 6

Conclusion & Future Work

This thesis described a novel approach for influenza outbreak projection that combines dynamic models

with empirical data to better capture outbreak dynamics. Moreover, the thesis demonstrates how traditional

surveillance data sources can be complemented with time series characterizing communicational behaviour to

inform pandemic influenza models considering adaptive behaviours based on fear. This chapter will provide

an overview of thesis contributions and highlight potential directions for future work.

6.1 Summary of Findings

6.1.1 Particle Filtering in a SEIRV Simulation Model

We combined a traditional system dynamics model of epidemics with the sequential Monte Carlo method of

particle filtering to enable the model to consider a daily timeseries of reported clinical case counts and correct

the model latent state as new observations become available. Particle filtering contributed in estimating the

model states as well as evolving model parameters. We evaluated the predictive accuracy of the particle

filtered model and compared it with that associated with the calibrated version of the model. The particle

filtered model helps overcome that the widespread difficulty of dynamic models that cannot keep current

with the latest available empirical data, and supports adaption to evolution in stochastic parameters. In

the calibrated model, these parameters are treated as static, and the calibrated model consequently failed to

accurately predict long-term projections.

6.1.2 Predictive Accuracy of Particle Filtering in Dynamic Models Supporting

Outbreak Projections

We investigated how ranges of parameters values for particle filtered influenza dynamic models influence their

predictive accuracy. Factors examined include the frequency of sampling from observations, the dispersion

parameter associated with the negative binomial distribution used in particle filtering, and the volatility of

stochastically evolving parameters, such as the contact rate associated with the dynamic model. We found

that more frequent data observations lead to markedly improved predictions, with a doubling of the sampling

rate reducing the discrepancy by more than a factor of two. Our results further suggest that particle filtering

64



behaves in a robust manner with changes in dispersion parameter and the volatility with which the contact

rate evolves across the model time horizon.

6.1.3 Social Media Surveillance Improves Outbreak Projection via Transmission

Models

We investigated the degree to which considering daily search counts can enhance the prediction accuracy of

particle filtered models. We adapted a previously developed compartmental model for use in particle filtering

in such a way that the model can leverage daily search counts associated with the level of anxiety (for “fear”)

during a pandemic. We learned that combining particle filter and compartmental transmission models while

using both clinical observations and search volumes can strongly improve predictive accuracy.

6.2 Contributions

The contributions of this thesis can be summarized into three main areas: 1) by serving as one of the first

contributions using particle filtering together with influenza infection transmission models, 2) by serving as

the first study to systematically investigate optimum ranges for configuration parameters for transmission

models, 3) contributing the first investigation enhancing the results of particle filtering when used with a

dynamic model and both traditional data and a member of new generation of electronic epidemiological data

source – a search volume time series.

The first contribution was relatively novel as it was the first time that the applications of particle filtering

was explored in a SEIRV model. It was also the first model that stochastic parameters were characterized to

evolve based on observations of the real world data.

The second contribution was novel in terms of investigating the trade-off between employing more frequent

but more noisy data samples and less frequent but less noisy sampling in particle filtering models. We also

investigated the impact of varying parameters associated with behavioural change on model accuracy. In

addition we sought the impact of different assumptions regarding observational error on particle filtering

robustness.

The third contribution was a cutting edge work in terms of applying particle filtering to a coupled

contagious (disease and fear) system dynamics model using Google search counts as an evidence of fear in

population.

A key benefit of this work compared with the cited literature lies in its investigation of the capacity

of particle filtering to estimate the hidden states of the system that cannot be directly measured. While

there is a lack of direct empirical data on the values of those hidden states, the dynamics of such states

are implied by the combination of the structure mathematical model of the system and the empirical data

that is available – the time series of reported case counts and also the time-series of high-velocity online

data sources such as GFT. In addition, stochastic parameters have been considered as states so that particle
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filtering can aid in estimating these parameters. It bears emphasis that this approach is different than simple

forecasting-based contributions in that it can be used in problems of simultaneous (joint) estimation of state

and evolving parameters. A fundamental difference is that the particle filter relies upon a mechanistic model

of the underlying system – including latent factors, such as the count of susceptibles – whereas simple time-

series forecasting methods do not, as they often deal with simple extrapolation of observable quantities.

Beyond allowing estimation to support an understanding of the broader state of the system, this difference

commonly makes the particle filtering technique more effective in the prediction of uncertain time series

in situations where a theory of the underlying dynamical system is available. The other striking difference

between particle filtering algorithm and simple forecasting techniques is that particle filtering is involved with

updating along with predicting, which enables particle filtering to perform online estimation, recursively –

that is, allows particle filtering to update its estimate of the current state of the system as new data arrives.

More importantly, the reliance of particle filtering on an underlying model and its capability to perform online

estimation makes it suitable for investigating different intervention strategies. Particle filtering can estimate

and then be used further to investigate the impact of different interventions by projecting their effects forward,

as simulated, for example, by changing parameter values. This approach could serve as a valuable technique

to assist public health authorities in estimating size and length of influenza outbreaks. The application of

this technique can be extended to the transmission models of other pathogens with understudied dynamics.

In the field of public health, the occurrence, development, and prevalence of diseases – communicable or

not – can be regarded as faces of the dynamics of an underlying system. Because this underlying system is

generally believed to be affected by uncertain factors and stochastics, its investigation in a filtering context

can be an appropriate application for particle filtering method. In addition to models of diseases, particle

filtering can further be applicable to other spheres of health and health care, including health service delivery

(such as the operation of emergency departments), health workforce planning, etc. According to the findings

in this thesis, it has been examined that even rough models can take advantage of machine learning methods,

clinical data and search data to project evolution of outbreaks at relatively early stages. The robustness

of the methods examined here to changes in the parameters associated with that technique suggests that a

variant of the methods presented in this work can be used to estimate unknown parameters associated with

dynamic models of future emerging outbreaks. We hope that estimating the latent states of the models can

further help public health policy makers and their analysts in conducting “what if” scenarios characterizing

the effects of interventions and assessing the effects of those interventions.

6.3 Future Work

There are multiple possible research directions that could improve our contributions in this thesis. In this

section, we will discuss a few of the limitations in our model and approach. Further studies in these areas

contribute marked enhancement to the work presented here.
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It will be important to explore system dynamics models which consider other features of a pandemic, such

as social behaviour of different age groups. Because of past exposure to different strains of flu, individuals may

additionally be subject to differential susceptibility to new flu outbreaks. While capturing this dynamic will

require substantial structural changes to the models – essentially, creation of subscripts that capture different

combinations of exposure to past infections or vaccines – it may lead to developing more precise models of

population response to influenza. It will further make this work more applicable to decision making in public

health if the effects of interventions could be assessed by running “what if” scenarios and adding different

options of treatment, such as prophylactic antivirals to decrease susceptibility, antiviral administration to

those infected to lower the risk of complications and (slightly) the duration of symptoms, and treatment

with adjuvanted vaccines. All such interventions could be represented at a basic level with variations of the

models examined in this thesis. To develop a decision support system and apply this approach to resolve

real-world problems and evaluate different intervention strategies, it will be important to consider the tools

that are required to facilitate data gathering on an ongoing – rather than an episodic or one-time – basis.

To accomplish this, it is desirable to investigate solutions for streaming data into an “online” model that

recursively updates weights of particles when data from a new observation or set of observations arrives. For

such a purpose, various models can be used for each task; e.g. one model can be used purely to estimate the

current state, another to project forward that state for some time period, and yet other models can be used

to project forward the effects of different particular interventions. If necessary, the models could further be

restarted periodically, incorporating all data to that point (probably from a database). Further, the models

would further have to be equipped with an interface that would allow a decision maker, policy analyst,

medical health officer, or other health professional to easily specify hypothesized distributions regarding the

initial state, to update or supplement records of observations or change assumed values of parameter values,

to run the models in an “online” mode, or to run projection and counterfactual scenarios forward from the

current time.

Investigating the performance of other types of probability distributions in particle filtering would also

represent a valuable research contribution. Combining particle filtering with other types of models used in

public health area, such as agent-based modeling can be valuable. Seeking software and hardware acceleration

techniques will be especially important when used with agent-based particle filtering, because of the heavy

load imposed by such approaches

To improve the predictive accuracy of models, it will be important to move beyond search query volumes

to leverage the vast amount of data from social media platforms such as Facebook, Twitter, and Tumblr

for pandemic prediction purposes –self-publishing platforms such as Twitter and Tumblr are specifically

attractive due to lower ethics concerns– and to improve the data harvesting methods for a more reliable and

higher resolution geographic-specific datasets.

The best design for likelihood functions employing two distinct data sources can be investigated. Further

experimentation is required with the stochastic parameters associated with random walks, specifically with
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those parameters with high volatility. It will further be important to examine a combination of Markov Chain

Monte Carlo methods with sequential Monte Carlo methods in the form of PMCMC. PMCMC can support

rapid learning incorporating different lines of evidence related to a system to estimate the system states and

principle parameters, and predict system trends.

6.4 Conclusion

Our original hypothesis stated that joining mathematical models and empirical data can improve the predic-

tive accuracy of projection models. In order to investigate this hypothesis, we sought to adapt compartmental

models by enabling them to learn from real-time observations. We combined particle filtering with different

adapted compartmental models and investigated the effectiveness of different datasets as tools to inform the

model regarding the real world. Our results demonstrated that particle filtering in combination with simple

dynamic models and particularly in the presence of reporting and high temporal resolution online commu-

nicational behaviour data can support robust and accurate projections, and estimation of the latent state

of the compartmental model, thereby opening the opportunity for investigation of alternative intervention

schemes.
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Appendix A

The calibrated values of parameters are shown as

bellow:

Variable name Value Units
Probability of infection transmission given
exposure multiplied by contacts per week

4.8 1/Week

Mean latent time 0.278 Week
Fraction of reported incidents 0.001 Unit
Fraction initially susceptible 0.993 Unit
Fraction initially exposed 9.2E − 8 Unit
Fraction initially infective 1.59E − 5 Unit
Fraction initially recovered 0.005 Unit
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Appendix B

Detailed information about initial values of compart-

mental states

S0: Truncated normal distribution, Mean = 900000, Standard deviation = 150000, Lower bound = 0,
Upper bound = N - I0, Sample size = number of particles = 10000

E0: 0 for all particles
I0: 7 for all particles
R0: N - S0 − E0 − I0 − V0
V0: 0 for all particles
In this model, V class refers to those receiving vaccination during the pandemic (ongoing vaccination).

Those being vaccinated prior to the second wave might be part of R class or S depending on vaccine efficacy.
Since the initial values of R and S were unclear, we considered the initial values of these states as distributions.
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Appendix C

The discrepancy of particle filtering predictions in

frequency scenarios for different observation times

and γ = 0.125 and γ = 2

Frequency scenarios (γ = 0.125) T ∗ = 35 T ∗ = 42 T ∗ = 49 T ∗ = 56
PF using daily data, r=2 354 225 71 0
PF using three-day data, r=6 12109 5945 1593 181
PF using weekly data, r=14 68381 36313 6322 608
PF using daily data, r=8 381 210 44 0
PF using three-day data, r=24 12273 5655 1309 93
PF using weekly data, r=56 162378 40820 5670 476
PF using daily data, r=32 455 169 13 0
PF using three-day data, r=96 12808 4647 1125 90
PF using weekly data, r=224 153010 44106 5224 295

Table C.1: Discrepancy of particle filtering predictions in frequency scenarios for different observation
times and γ= 0.125

Frequency scenarios (γ = 2.0) T ∗ = 35 T ∗ = 42 T ∗ = 49 T ∗ = 56
PF using daily data, r=2 3327 695 87 0
PF using three-day data, r=6 43931 12590 1630 39
PF using weekly data, r=14 645037 154916 16362 976
PF using daily data, r=8 1568 241 18 0
PF using three-day data, r=24 35024 6251 682 4
PF using weekly data, r=56 1216215 129467 6072 376
PF using daily data, r=32 904 104 5 0
PF using three-day data, r=96 25452 4199 393 0
PF using weekly data, r=224 1243398 129629 4580 254

Table C.2: Discrepancy of particle filtering predictions in frequency scenarios for different observation
times and γ= 2.0
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