427 research outputs found

    Atomic-scale regulation of anionic and cationic migration in alkali metal batteries

    Full text link
    The regulation of anions and cations at the atomic scale is of great significance in membrane-based separation technologies. Ionic transport regulation techniques could also play a crucial role in developing high-performance alkali metal batteries such as alkali metal-sulfur and alkali metal-selenium batteries, which suffer from the non-uniform transport of alkali metal ions (e.g., Li+ or Na+) and detrimental shuttling effect of polysulfide/polyselenide anions. These drawbacks could cause unfavourable growth of alkali metal depositions at the metal electrode and irreversible consumption of cathode active materials, leading to capacity decay and short cycling life. Herein, we propose the use of a polypropylene separator coated with negatively charged Ti0.87O2 nanosheets with Ti atomic vacancies to tackle these issues. In particular, we demonstrate that the electrostatic interactions between the negatively charged Ti0.87O2 nanosheets and polysulfide/polyselenide anions reduce the shuttling effect. Moreover, the Ti0.87O2-coated separator regulates the migration of alkali ions ensuring a homogeneous ion flux and the Ti vacancies, acting as sub-nanometric pores, promote fast alkali-ion diffusion

    The first experience of ex-vivo lung perfusion (EVLP) in Iran: An effective method to increase suitable lung for transplantation

    Get PDF
    Background: Although lung transplantation is a well-accepted treatment for end-stage lung diseases patients, only 15-20 of the brain-dead donors' lungs are usable for transplantation. This results in high mortality of candidates on waiting lists. Ex-vivo lung perfusion (EVLP) is a novel method for better evaluation of a potential lung for transplantation. Objective: To report the first experience of EVLP in Iran. Methods: The study included a pig in Vienna Medical University, Vienna, Austria, and 4 humans in Masih Daneshvari Hospital, Tehran, Iran. All brain-dead donors from 2013 to 2015 in Tehran were evaluated for EVLP. Donors without signs of severe chest trauma or pneumonia, with poor oxygenation were included. Results: An increasing trend in difference between the pulmonary arterial pO2 and left atrial pO2, an increasing pattern in dynamic lung compliance, and a decreasing trend in the pulmonary vascular resistance, were observed. Conclusion: The initial experience of EVLP in Iran was successful in terms of important/critical parameters. The results emphasize on some important considerations such as precisely following standard lung harvesting and monitoring temperature and pressure. EVLP technique may not be a cost-effective option for low-income countries at first glance. However, because this is the only therapeutic treatment for end-stage lung disease, it is advisable to continue working on this method to find alternatives with lesser costs

    Combined modalities of resistance in an oxaliplatin-resistant human gastric cancer cell line with enhanced sensitivity to 5-fluorouracil

    Get PDF
    To identify mechanisms underlying oxaliplatin resistance, a subline of the human gastric adenocarcinoma TSGH cell line, S3, was made resistant to oxaliplatin by continuous selection against increasing drug concentrations. Compared with the parental TSGH cells, the S3 subline showed 58-fold resistance to oxaliplatin; it also displayed 11-, 2-, and 4.7-fold resistance to cis-diammine-dichloroplatinum (II) (CDDP), copper sulphate, and arsenic trioxide, respectively. Interestingly, S3 cells were fourfold more susceptible to 5-fluorouracil-induced cytotoxicity due to downregulation of thymidylate synthase. Despite elevated glutathione levels in S3 cells, there was no alteration of resistant phenotype to oxaliplatin or CDDP when cells were co-treated with glutathione-depleting agent, l-buthionine-(S,R)-sulphoximine. Cellular CDDP and oxaliplatin accumulation was decreased in S3 cells. In addition, amounts of oxaliplatin- and CDDP–DNA adducts in S3 cells were about 15 and 40% of those seen with TSGH cells, respectively. Western blot analysis showed increased the expression level of copper transporter ATP7A in S3 cells compared with TSGH cells. Partial reversal of the resistance of S3 cells to oxaliplatin and CDDP was observed by treating cell with ATP7A-targeted siRNA oligonucleotides or P-type ATPase-inhibitor sodium orthovanadate. Besides, host reactivation assay revealed enhanced repair of oxaliplatin- or CDDP-damaged DNA in S3 cells compared with TSGH cells. Together, our results show that the mechanism responsible for oxaliplatin and CDDP resistance in S3 cells is the combination of increased DNA repair and overexpression of ATP7A. Downregulation of thymidylate synthase in S3 cells renders them more susceptible to 5-fluorouracil-induced cytotoxicity. These findings could pave ways for future efforts to overcome oxaliplatin resistance

    The first experience of ex-vivo lung perfusion (EVLP) in Iran: An effective method to increase suitable lung for transplantation

    Get PDF
    Background: Although lung transplantation is a well-accepted treatment for end-stage lung diseases patients, only 15-20 of the brain-dead donors' lungs are usable for transplantation. This results in high mortality of candidates on waiting lists. Ex-vivo lung perfusion (EVLP) is a novel method for better evaluation of a potential lung for transplantation. Objective: To report the first experience of EVLP in Iran. Methods: The study included a pig in Vienna Medical University, Vienna, Austria, and 4 humans in Masih Daneshvari Hospital, Tehran, Iran. All brain-dead donors from 2013 to 2015 in Tehran were evaluated for EVLP. Donors without signs of severe chest trauma or pneumonia, with poor oxygenation were included. Results: An increasing trend in difference between the pulmonary arterial pO2 and left atrial pO2, an increasing pattern in dynamic lung compliance, and a decreasing trend in the pulmonary vascular resistance, were observed. Conclusion: The initial experience of EVLP in Iran was successful in terms of important/critical parameters. The results emphasize on some important considerations such as precisely following standard lung harvesting and monitoring temperature and pressure. EVLP technique may not be a cost-effective option for low-income countries at first glance. However, because this is the only therapeutic treatment for end-stage lung disease, it is advisable to continue working on this method to find alternatives with lesser costs

    Fabrication and characterization of a Gallium co-doped Erbium optical fiber

    Get PDF
    In this paper, fabrication and characterization of a Gallium co-doped Erbium fiber is presented, highlighting Gallium as a new potential co-dopant to be used in rare-earth doped fibers. This fiber was fabricated using standard MCVD and solution doping method. Fiber characterization setups for fluorescence lifetime, absorption and ASE spectrum are discussed in detail. We go on to show that fluorescence lifetime of 6.02 ms, NA of 0.12, cutoff wavelength of 1.4 μm and a peak absorption of 45 dB/m at 1550 nm is achievable using Gallium as the co-dopant for an Erbium doped fiber

    Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    Get PDF
    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.National Institutes of Health (U.S.) (DC010998)National Institutes of Health (U.S.) (NIH DC010231)Harvard College (1780- )Sarah Fuller Foundation for Little Deaf Childre

    Self-renewal and chemotherapy resistance of p75NTR positive cells in esophageal squamous cell carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>p75<sup>NTR </sup>has been used to isolate esophageal and corneal epithelial stem cells. In the present study, we investigated the expression of p75<sup>NTR </sup>in esophageal squamous cell carcinoma (ESCC) and explored the biological properties of p75<sup>NTR+ </sup>cells.</p> <p>Methods</p> <p>p75<sup>NTR </sup>expression in ESCC was assessed by immunohistochemistry. p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells of 4 ESCC cell lines were separated by fluorescence-activated cell sorting. Differentially expressed genes between p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells were determined by real-time quantitative reverse transcription-PCR. Sphere formation assay, DDP sensitivity assay, <sup>64</sup>copper accumulation assay and tumorigenicity analysis were performed to determine the capacity of self-renewal, chemotherapy resistance and tumorigenicity of p75<sup>NTR+ </sup>cells.</p> <p>Results</p> <p>In ESCC specimens, p75<sup>NTR </sup>was found mainly confined to immature cells and absent in cells undergoing terminal differentiation. The percentage of p75<sup>NTR+ </sup>cells was 1.6%–3.7% in Eca109 and 3 newly established ESCC cell lines. The expression of Bmi-1, which is associated with self-renewal of stem cells, was significantly higher in p75<sup>NTR+ </sup>cells. p63, a marker identified in keratinocyte stem cells, was confined mainly to p75<sup>NTR+ </sup>cells. The expression of CTR1, which is associated with cisplatin (DDP)-resistance, was significantly decreased in p75<sup>NTR+ </sup>cells. Expression levels of differentiation markers, such as involucrin, cytokeratin 13, β1-integrin and β4-integrin, were lower in p75<sup>NTR+ </sup>cells. In addition, p75<sup>NTR+ </sup>cells generated both p75<sup>NTR+ </sup>and p75<sup>NTR- </sup>cells, and formed nonadherent spherical clusters in serum-free medium supplemented with growth factors. Furthermore, p75<sup>NTR+ </sup>cells were found to be more resistant to DDP and exhibited lower <sup>64</sup>copper accumulation than p75<sup>NTR- </sup>cells.</p> <p>Conclusion</p> <p>Our results demonstrated that p75<sup>NTR+ </sup>cells possess some characteristics of CSCs, namely, self-renewal and chemotherapy resistance. Chemotherapy resistance of p75<sup>NTR+ </sup>cells may probably be attributable to decreased expression of CTR1.</p
    corecore