49 research outputs found
Characterization of sequences in human TWIST required for nuclear localization
<p>Abstract</p> <p>Background</p> <p>Twist is a transcription factor that plays an important role in proliferation and tumorigenesis. Twist is a nuclear protein that regulates a variety of cellular functions controlled by protein-protein interactions and gene transcription events. The focus of this study was to characterize putative nuclear localization signals (NLSs) <sup>37</sup>RKRR<sup>40 </sup>and <sup>73</sup>KRGKK<sup>77 </sup>in the human TWIST (H-TWIST) protein.</p> <p>Results</p> <p>Using site-specific mutagenesis and immunofluorescences, we observed that altered TWIST<sup>NLS1 </sup>K38R, TWIST<sup>NLS2 </sup>K73R and K77R constructs inhibit nuclear accumulation of H-TWIST in mammalian cells, while TWIST<sup>NLS2 </sup>K76R expression was un-affected and retained to the nucleus. Subsequently, co-transfection of TWIST mutants K38R, K73R and K77R with E12 formed heterodimers and restored nuclear localization despite the NLSs mutations. Using a yeast-two-hybrid assay, we identified a novel TWIST-interacting candidate TCF-4, a basic helix-loop-helix transcription factor. The interaction of TWIST with TCF-4 confirmed using NLS rescue assays, where nuclear expression of mutant TWIST<sup>NLS1 </sup>with co-transfixed TCF-4 was observed. The interaction of TWIST with TCF-4 was also seen using standard immunoprecipitation assays.</p> <p>Conclusion</p> <p>Our study demonstrates the presence of two putative NLS motifs in H-TWIST and suggests that these NLS sequences are functional. Furthermore, we identified and confirmed the interaction of TWIST with a novel protein candidate TCF-4.</p
Harnessing data science to improve integrated management of invasive pest species across Africa: an application to Fall armyworm (Spodoptera frugiperda) (J.E. Smith) (Lepidoptera: Noctuidae)
Open Access Journal; Published online: 11 Feb 2022After five years of its first report on the African continent, Fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) is considered a major threat to maize, sorghum, and millet production in sub-Saharan Africa. Despite the rigorous work already conducted to reduce FAW prevalence, the dynamics and invasion mechanisms of FAW in Africa are still poorly understood. This study applied interdisciplinary tools, analytics, and algorithms on a FAW dataset with a spatial lens to provide insights and project the intensity of FAW infestation across Africa. The data collected between January 2018 and December 2020 in selected locations were matched with the monthly average data of the climatic and environmental variables. The multilevel analytics aimed to identify the key factors that influence the dynamics of spatial and temporal pest density and occurrence at a 2 km x 2 km grid resolution. The seasonal variations of the identified factors and dynamics were used to calibrate rule-based analytics employed to simulate the monthly densities and occurrence of the FAW for the years 2018, 2019, and 2020. Three FAW density level classes were inferred, i.e., low (0–10 FAW moth per trap), moderate (11–30 FAW moth per trap), and high (>30 FAW moth per trap). Results show that monthly density projections were sensitive to the type of FAW host vegetation and the seasonal variability of climatic factors. Moreover, the diversity in the climate patterns and cropping systems across the African sub-regions are considered the main drivers of FAW abundance and variation. An optimum overall accuracy of 53% was obtained across the three years and at a continental scale, however, a gradual increase in prediction accuracy was observed among the years, with 2020 predictions providing accuracies greater than 70%. Apart from the low amount of data in 2018 and 2019, the average level of accuracy obtained could also be explained by the non-inclusion of data related to certain key factors such as the influence of natural enemies (predators, parasitoids, and pathogens) into the analysis. Further detailed data on the occurrence and efficiency of FAW natural enemies in the region may help to complete the tri-trophic interactions between the host plants, pests, and beneficial organisms. Nevertheless, the tool developed in this study provides a framework for field monitoring of FAW in Africa that may be a basis for a future decision support system (DSS)
Recommended from our members
Optical control, diagnostic and power supply system for a solid state induction modulator
A new high speed optical control, diagnostic and power supply system has been developed for a solid state induction modulator. The modulator consists of a large array of field effect transistors (FETs) that switch a high-voltage pulse across a tape-wound magnetic core. The FETs within the modulator are mounted on numerous circuit boards that are stacked in series for high-voltage operation. The new optical system overcomes the issue of voltage isolation by supplying each circuit board with optically coupled control power and high bandwidth signal information. An optical fiber is used to transmit laser light to a custom photovoltaic cell that provides dc power to the on-board control circuits. Optical fiber technology is again used to convey a pulse that contains detailed analog features to the FET gate controls. Diagnostic data and status information are also obtained from each board by similar optical methods. 8 refs., 6 figs., 1 tab
Lineshapes in carbon 1s photoelectron spectra of methanol clusters
A general protocol for theoretical modeling of inner-shell photoelectron spectra of molecular clusters is presented and applied to C1s spectra of oligomers and medium-sized clusters of methanol. The protocol employs molecular dynamics for obtaining cluster geometries and a polarizable force field for computing site-specific chemical shifts in ionization energy and linewidth. Comparisons to spectra computed from first-principle theories are used to establish the accuracy of the proposed force field approach. The model is used to analyze the C1s photoelectron spectrum of medium-sized clusters in terms of surface and bulk contributions. By treating the surface-to-bulk ratio as an adjustable parameter, satisfactory fits are obtained to experimental C1s spectra of a beam of methanol clusters
Recommended from our members
MHz Repetition Rate Solid-State Driver for High Current Induction Accelerators
A research team from the Lawrence Livermore National Laboratory and Bechtel Nevada Corporation is developing an all solid-state power source for high current induction accelerators. The original power system design, developed for heavy-ion fusion accelerators, is based on the simple idea of using an array of field effect transistors to switch energy from a pre-charged capacitor bank to an induction accelerator cell. Recently, that idea has been expanded to accommodate the greater power needs of a new class of high-current electron accelerators for advanced radiography. For this purpose, we developed a 3-stage induction adder that uses over 4,000 field effect transistors to switch peak voltages of 45 kV at currents up to 4.8 kA with pulse repetition rates of up to 2 MHz. This radically advanced power system can generate a burst of five or more pulses that vary from 200 ns to 2 µs at a duty cycle of up to 25%. Our new source is precise, robust, flexible, and exceeds all previous drivers for induction machines by a factor of 400 in repetition rate and a factor of 1000 in duty cycle
The role of molecular polarity in cluster local structure studied by photoelectron spectroscopy
We have studied the spatial structure and electronic levels of clusters of the molecule CH3Br to investigate the effects of molecular polarity on these properties. Analysis of the core level photoclectron spectra of initially neutral CH3Br clusters shows that the C 1 s(-1) state has a 30% larger binding energy shift between free molecules and clusters than the Br 3d(-1) state. This difference is attributed to an anti-parallel packing of the molecules induced by the polar character of bromomethane. The results obtained from the analysis of valence cluster spectra also support the proposed structure. (c) 2007 Elsevier B.V. All rights reserved
High resolution C1s and S2p photoelectron spectra of tiophene
Vibrationally resolved C1s and S2p photoelectron spectra of the thiophene molecule have been recorded using monochromated synchrotron radiation at photon energies of 330 eV and 210 eV, respectively. The photoelectron bands contain complex vibrational structures which are analyzed using ab initio and curve-fitting procedures. The analysis is in good agreement with the experimental spectrum which enables identification of two chemically shifted carbon 1s core hole states. We were also able to determine the molecular-field splitting of the S2p3/2 ionic state to about 99 meV. The molecular-field splitting was moreover calculated using second-order Møller–Plesset perturbation theory, confirming the result from the fitting procedure
Valence photoelectron spectroscopy of N-2 and CO: Recoil-induced rotational excitation, relative intensities, and atomic orbital composition of molecular orbitals
Recoil-induced rotational excitation accompanying photoionization has been measured for the X, A, and B states of N-2(+) and CO+ over a range of photon energies from 60 to 900 eV. The mean recoil excitation increases linearly with the kinetic energy of the photoelectron, with slopes ranging from 0.73 x 10(-5) to 1.40 x 10(-5). These slopes are generally (but not completely) in accord with a simple model that treats the electrons as if they were emitted from isolated atoms. This treatment takes into account the atom from which the electron is emitted, the molecular-frame angular distribution of the electron, and the dependence of the photoelectron cross section on photon energy, on atomic identity, and on the type of atomic orbital from which the electron is ejected. These measurements thus provide a tool for investigating the atomic orbital composition of the molecular orbitals. Additional insight into this composition is obtained from the relative intensities of the various photolines in the spectrum and their variation with photon energy. Although there are some discrepancies between the predictions of the model and the observations, many of these can be understood qualitatively from a comparison of atomic and molecular wavefunctions. A quantum-mechanical treatment of recoil-induced excitation predicts an oscillatory variation with photon energy of the excitation. However, the predicted oscillations are small compared with the uncertainties in the data, and, as a result, the currently available results cannot provide confirmation of the quantum-mechanical theory. (C) 2010 American Institute of Physics. [doi:10.1063/1.3503658