25 research outputs found
The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements.
We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 μT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz
Search for Neutron-to-Hidden-Neutron Oscillations in an Ultracold Neutron Beam
International audienceModels that postulate the existence of hidden sectors address contemporary questions, such as the source of baryogenesis and the nature of dark matter. Neutron-to-hidden-neutron oscillations are among the possible mixing processes and have been tested with ultracold neutron storage and passing-through-wall experiments to set constraints on the oscillation period τnn′. These searches probe the oscillations as a function of the mass splitting due to the neutron-hidden-neutron energy degeneracy. In this work, we present a new limit derived from neutron disappearance in ultracold neutron beam experiments. The overall limit, given by τnn′>1 s for |δm|∈[2,69] peV(95.45% C.L.), covers the yet unexplored intermediate mass-splitting range and contributes to the ongoing research on hidden sectors
The `n2EDM MSR' -- a very large magnetically shielded room with an exceptional performance for fundamental physics measurements
We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute which features an interior cubic volume with each side of length 2.92m, thus providing an accessible space of 25m3. The MSR has 87 openings up to 220mm diameter to operate the experimental apparatus inside, and an intermediate space between the layers for sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1m3 below 100pT, and a field below 600pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2muT peak-to-peak signal is about 100,000 in all three spatial directions and rises fast with frequency to reach 10^8 above 1Hz
The `n2EDM MSR' -- a very large magnetically shielded room with an exceptional performance for fundamental physics measurements
We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute which features an interior cubic volume with each side of length 2.92m, thus providing an accessible space of 25m3. The MSR has 87 openings up to 220mm diameter to operate the experimental apparatus inside, and an intermediate space between the layers for sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1m3 below 100pT, and a field below 600pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2muT peak-to-peak signal is about 100,000 in all three spatial directions and rises fast with frequency to reach 10^8 above 1Hz
A large 'Active Magnetic Shield' for a high-precision experiment
International audienceWe present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about 10^5 for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000m^3 around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to +-50muT (homogeneous components) and +-5muT (first-order gradients), suppressing them to a few muT in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions