44 research outputs found

    Origin and Spread of de Novo Genes in Drosophila melanogaster Populations

    Get PDF
    Comparative genomic analyses have revealed that genes may arise from ancestrally non-genic sequence. However, the origin and spread of these de novo genes within populations remain obscure. We identified 142 segregating and 106 fixed testis-expressed de novo genes in a population sample of Drosophila melanogaster. These genes appear to derive primarily from ancestral intergenic, unexpressed open reading frames (ORFs), with natural selection playing a significant role in their spread. These results reveal a heretofore-unappreciated dynamism of gene content

    The genome of the stable fly, Stomoxys calcitrans, reveals potential mechanisms underlying reproduction, host interactions, and novel targets for pest control.

    Get PDF
    The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha

    Population genomics of sub-Saharan Drosophila melanogaster: African diversity and non-African admixture

    Get PDF
    (ABRIDGED) We report the genome sequencing of 139 wild-derived strains of D. melanogaster, representing 22 population samples from the sub-Saharan ancestral range of this species, along with one European population. Most genomes were sequenced above 25X depth from haploid embryos. Results indicated a pervasive influence of non-African admixture in many African populations, motivating the development and application of a novel admixture detection method. Admixture proportions varied among populations, with greater admixture in urban locations. Admixture levels also varied across the genome, with localized peaks and valleys suggestive of a non-neutral introgression process. Genomes from the same location differed starkly in ancestry, suggesting that isolation mechanisms may exist within African populations. After removing putatively admixed genomic segments, the greatest genetic diversity was observed in southern Africa (e.g. Zambia), while diversity in other populations was largely consistent with a geographic expansion from this potentially ancestral region. The European population showed different levels of diversity reduction on each chromosome arm, and some African populations displayed chromosome arm-specific diversity reductions. Inversions in the European sample were associated with strong elevations in diversity across chromosome arms. Genomic scans were conducted to identify loci that may represent targets of positive selection. A disproportionate number of candidate selective sweep regions were located near genes with varied roles in gene regulation. Outliers for Europe-Africa FST were found to be enriched in genomic regions of locally elevated cosmopolitan admixture, possibly reflecting a role for some of these loci in driving the introgression of non-African alleles into African populations

    Genomic Patterns of Geographic Differentiation in Drosophila simulans

    No full text
    Geographic patterns of genetic differentiation have long been used to understand population history and to learn about the biological mechanisms of adaptation. Here we present an examination of genomic patterns of differentiation between northern and southern populations of Australian and North American Drosophila simulans, with an emphasis on characterizing signals of parallel differentiation. We report on the genomic scale of differentiation and functional enrichment of outlier SNPs. While, overall, signals of shared differentiation are modest, we find the strongest support for parallel differentiation in genomic regions that are associated with regulation. Comparisons to Drosophila melanogaster yield potential candidate genes involved in local adaptation in both species, providing insight into common selective pressures and responses. In contrast to D. melanogaster, in D. simulans we observe patterns of variation that are inconsistent with a model of temperate adaptation out of a tropical ancestral range, highlighting potential differences in demographic and colonization histories of this cosmopolitan species pair

    Complete chromosome-level genome assembly data from the tawny crazy ant, Nylanderia fulva (Mayr) (Hymenoptera: Formicidae)

    No full text
    The tawny crazy ant, Nylanderia fulva (Mayr) (Hymenoptera: Formicidae) has a native range that extends from northern Argentina to southern Brazil. In the U.S.A. this species has often been misidentified as Nylanderia (Paratrechina) pubens or N. cf. pubens and has likely been present in Florida and Texas for several decades [1]. In the early 2000’s explosive population growth in Texas and neighboring states drew renewed taxonomic focus. Genetic analyses [2,3] aided in identifying the pest species as N. fulva. This species poses an invasive threat to native flora and fauna and human structures. In its invasive range it has been reported to displace another invasive species, the red imported fire ant. The specimens used for genome sequencing were obtained from the coastal region of Mississippi. DNA was extracted from pupae. The genome data set was deposited to the National Center for Biotechnology Information as submission ID: SUB10775679, Project ID: PRJNA796544, Accession IDs: SAMN24895442 and JAKFQQ000000000. The organism taxid is 613905, locus tag prefixes are L1K79. The assembly, USDA_Nfulva_1.0, was generated in collaboration with Dovetail Genomics (now Cantata Bio) to yield a chromosome-level assembly of 375 Mb with a 15.67 Mb N50 and 78X coverage and revealing 16 putative chromosomes. This high-quality chromosome-level genome assembly was released prior to publication as a public service to the research community

    Physiological responses to heat stress in two genetically distinct chicken inbred lines

    No full text
    High ambient temperature is one of the most important environmental factors negatively impacting poultry production and health. Genetics is an important contributor in mitigating the stress response to heat. Two genetically distinct highly inbred lines of similar body size (Leghorn and Fayoumi) were characterized for phenotypic differences in response to heat. At 14 days of age, birds were exposed to 38°C with 50% humidity for 4 hours, then 35°C until the conclusion of the experiment. Non-treated individuals were kept at 29.4°C for the first week and then 25°C throughout the experiment. Birds in the heat-stress group were inoculated at day (d) 21 with Newcastle disease virus (NDV) La Sota strain to investigate the effects of heat stress and NDV infection. Thirteen blood parameters were measured using the iSTAT blood analyzer at three stages: 4 h, 6 d, and 9 d post heat-stress treatment, representing acute heat (AH) exposure, chronic heat (CH1) exposure, and chronic heat exposure after virus infection (CH2), respectively. Most blood parameters were significantly changed with heat stress in Leghorns at AH and in Fayoumis at CH1 and CH2. The Leghorn line had significant acute responses with disrupted acid-base balance and metabolic disorders. The heat-resilient Fayoumis maintained a relatively well-balanced acid-base balance. The current study provides the comprehensive profile of biomarker signatures in blood associated with heat tolerance and suggests that PO2, TCO2, HCO3, and base excess can be served as potential biomarkers that can be used to genetically improve heat tolerance in poultry.This article is published as Wang, Y., P. Saelao, K. Chanthavixay, R. Gallardo, D. Bunn, S. J. Lamont, J. M. Dekkers, T. Kelly, and H. Zhou. "Physiological responses to heat stress in two genetically distinct chicken inbred lines." Poultry Science 97, no. 3 (2018): 770-780. DOI: 10.3382/ps/pex363. Posted with permission.</p

    Host response to successive challenges with lentogenic and velogenic Newcastle disease virus in local chickens of Ghana

    No full text
    Newcastle disease (ND) is a highly contagious viral disease that constantly threatens poultry production. The velogenic (highly virulent) form of ND inflicts the most damage and can lead to 100% mortality in unvaccinated village chicken flocks. This study sought to characterize responses of local chickens in Ghana after challenging them with lentogenic and velogenic Newcastle disease virus (NDV) strains. At 4 wk of age, chicks were challenged with lentogenic NDV. Traits measured were pre- and post-lentogenic infection growth rates (GR), viral load at 2 and 6 d post-lentogenic infection (DPI), viral clearance rate and antibody levels at 10 DPI. Subsequently, the chickens were naturally exposed to velogenic NDV (vNDV) after anti-NDV antibody titers had waned to levels ≤1:1,700. Body weights and blood samples were again collected for analysis. Finally, chickens were euthanized and lesion scores (LS) across tissues were recorded. Post-velogenic exposure GR; antibody levels at 21 and 34 days post-velogenic exposure (DPE); LS for trachea, proventriculus, intestines, and cecal tonsils; and average LS across tissues were measured. Variance components and heritabilities were estimated for all traits using univariate animal models. Mean pre- and post-lentogenic NDV infection GRs were 6.26 g/day and 7.93 g/day, respectively, but mean post-velogenic NDV exposure GR was −1.96 g/day. Mean lesion scores ranged from 0.52 (trachea) to 1.33 (intestine), with males having significantly higher (P This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore