6 research outputs found

    Form friction factor of armored river beds

    No full text
    Resistance to flow because of the presence of bed forms over armored riverbeds is of paramount importance, leading to the effective design of water-resources-related projects. Based on the findings over bed armored surfaces, it is shown that the controlling roughness (ks) can be taken as equal to the median diameter of the armor layer. Analytical methodologies for total and grain friction factors have been proposed here that take flow non-uniformity into account using the velocity distribution and friction slope. The percentage composition of form friction factor in the total friction factor was estimated to be 40%. The results were explained in light of the coupling of the sediment threshold problem with the friction factor and coarse-grain rearrangement in armor layer. The computed form friction factor by proposed method was compared with Keulegan’s method and is found to give satisfactory results, showing 80% agreement of all field data sets.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Flow resistance at lowland and mountainous rivers

    No full text
    This study initially examines the various sources of flow resistance in sand-bed (lowland) and gravel-bed (mountainous) rivers along with the limitations of traditional estimation methods. The nondimensional hydraulic geometry approach, relating dimensionless flow discharge (q*) to the Darcy-Weisbach friction factor (f), has demonstrated good performance for both river types, covering shallow to moderately deep flows. However, accuracy in estimating f is affected by simplifications like assuming uniform and deep flow, neglecting bed load transport and vegetation effects, which require further evaluation. To address these issues, the proposed method is evaluated using data from four sand-bed rivers in Slovakia (with vegetation), and three gravel-bed rivers in Iran (dominated by cobbles and boulders). Bedforms prove to be significant resistance sources in all studied rivers. The approach yields separate predictors for each river type, showing a satisfactory agreement between observed and calculated values within a maximum deviation of ±20% error bands. These predictors are further validated using field data and established equations from rivers with similar physiographic characteristics. Results indicate the method performs well in predicting flow resistance in sand-bed rivers, slightly overestimating overall (+40%). It effectively captures riverbed features and vegetation influence under small-scale roughness conditions. However, the predictor’s validity for gravel-bed rivers is somewhat limited due to high variability in water-surface profiles, making it challenging to accurately capture flow dynamics under large-scale roughness conditions. Addressing complex characteristics of gravel-bed riverbeds, including boulders and local energy extraction, is crucial for improving the estimation of water-surface profile variations and flow resistance using the hydraulic geometry approach

    Numerical investigation of dam break flow over erodible beds with diverse substrate level variations

    No full text
    This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon
    corecore