10 research outputs found

    A Minimum-Cost Flow Model for Workload Optimization on Cloud Infrastructure

    Full text link
    Recent technology advancements in the areas of compute, storage and networking, along with the increased demand for organizations to cut costs while remaining responsive to increasing service demands have led to the growth in the adoption of cloud computing services. Cloud services provide the promise of improved agility, resiliency, scalability and a lowered Total Cost of Ownership (TCO). This research introduces a framework for minimizing cost and maximizing resource utilization by using an Integer Linear Programming (ILP) approach to optimize the assignment of workloads to servers on Amazon Web Services (AWS) cloud infrastructure. The model is based on the classical minimum-cost flow model, known as the assignment model.Comment: 2017 IEEE 10th International Conference on Cloud Computin

    Network analysis of ballast-mediated species transfer reveals important introduction and dispersal patterns in the Arctic

    Full text link
    Rapid climate change has wide-ranging implications for the Arctic region, including sea ice loss, increased geopolitical attention, and expanding economic activity, including a dramatic increase in shipping activity. As a result, the risk of harmful non-native marine species being introduced into this critical region will increase unless policy and management steps are implemented in response. Using big data about shipping, ecoregions, and environmental conditions, we leverage network analysis and data mining techniques to assess, visualize, and project ballast water-mediated species introductions into the Arctic and dispersal of non-native species within the Arctic. We first identify high-risk connections between the Arctic and non-Arctic ports that could be sources of non-native species over 15 years (1997-2012) and observe the emergence of shipping hubs in the Arctic where the cumulative risk of non-native species introduction is increasing. We then consider how environmental conditions can constrain this Arctic introduction network for species with different physiological limits, thus providing a species-level tool for decision-makers. Next, we focus on within-Arctic ballast-mediated species dispersal where we use higher-order network analysis to identify critical shipping routes that may facilitate species dispersal within the Arctic. The risk assessment and projection framework we propose could inform risk-based assessment and management of ship-borne invasive species in the Arctic

    Environment and shipping drive environmental DNA beta-diversity among commercial ports

    Get PDF
    The spread of nonindigenous species by shipping is a large and growing global problem that harms coastal ecosystems and economies and may blur coastal biogeographical patterns. This study coupled eukaryotic environmental DNA (eDNA) metabarcoding with dissimilarity regression to test the hypothesis that ship-borne species spread homogenizes port communities. We first collected and metabarcoded water samples from ports in Europe, Asia, Australia and the Americas. We then calculated community dissimilarities between port pairs and tested for effects of environmental dissimilarity, biogeographical region and four alternative measures of ship-borne species transport risk. We predicted that higher shipping between ports would decrease community dissimilarity, that the effect of shipping would be small compared to that of environment dissimilarity and shared biogeography, and that more complex shipping risk metrics (which account for ballast water and stepping-stone spread) would perform better. Consistent with our hypotheses, community dissimilarities increased significantly with environmental dissimilarity and, to a lesser extent, decreased with ship-borne species transport risks, particularly if the ports had similar environments and stepping-stone risks were considered. Unexpectedly, we found no clear effect of shared biogeography, and that risk metrics incorporating estimates of ballast discharge did not offer more explanatory power than simpler traffic-based risks. Overall, we found that shipping homogenizes eukaryotic communities between ports in predictable ways, which could inform improvements in invasive species policy and management. We demonstrated the usefulness of eDNA metabarcoding and dissimilarity regression for disentangling the drivers of large-scale biodiversity patterns. We conclude by outlining logistical considerations and recommendations for future studies using this approach.Fil: Andrés, Jose. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Czechowski, Paul. Cornell University. Department Of Ecology And Evolutionary Biology; . University of Otago; Nueva Zelanda. Helmholtz Institute for Metabolic, Obesity and Vascular Research; AlemaniaFil: Grey, Erin. University of Maine; Estados Unidos. Governors State University; Estados UnidosFil: Saebi, Mandana. University of Notre Dame; Estados UnidosFil: Andres, Kara. Cornell University. Department Of Ecology And Evolutionary Biology;Fil: Brown, Christopher. California State University Maritime Academy; Estados UnidosFil: Chawla, Nitesh. University of Notre Dame; Estados UnidosFil: Corbett, James J.. University of Delaware; Estados UnidosFil: Brys, Rein. Research Institute for Nature and Forest; BélgicaFil: Cassey, Phillip. University of Adelaide; AustraliaFil: Correa, Nancy. Ministerio de Defensa. Armada Argentina. Instituto Universitario Naval de la Ara. Escuela de Ciencias del Mar; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval; ArgentinaFil: Deveney, Marty R.. South Australian Research And Development Institute; AustraliaFil: Egan, Scott P.. Rice University; Estados UnidosFil: Fisher, Joshua P.. United States Fish and Wildlife Service; Estados UnidosFil: vanden Hooff, Rian. Oregon Department of Environmental Quality; Estados UnidosFil: Knapp, Charles R.. Daniel P. Haerther Center for Conservation and Research; Estados UnidosFil: Leong, Sandric Chee Yew. National University of Singapore; SingapurFil: Neilson, Brian J.. State of Hawaii Division of Aquatic Resources; Estados UnidosFil: Paolucci, Esteban Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Pfrender, Michael E.. University of Notre Dame; Estados UnidosFil: Pochardt, Meredith R.. M. Rose Consulting; Estados UnidosFil: Prowse, Thomas A. A.. University of Adelaide; AustraliaFil: Rumrill, Steven S.. Oregon Department of Fish and Wildlife; Estados UnidosFil: Scianni, Chris. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Marine Invasive Species Program; Estados UnidosFil: Sylvester, Francisco. Universidad Nacional de Salta. Facultad de Ciencias Naturales. Instituto para el Estudio de la Biodiversidad de Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta; ArgentinaFil: Tamburri, Mario N.. University of Maryland; Estados UnidosFil: Therriault, Thomas W.. Pacific Biological Station; CanadáFil: Yeo, Darren C. J.. National University of Singapore; SingapurFil: Lodge, David M.. Cornell University. Department Of Ecology And Evolutionary Biology

    On the use of real-world datasets for reaction yield prediction

    No full text

    HONEM: Learning Embedding for Higher Order Networks

    No full text
    Representation learning on networks offers a powerful alternative to the oft painstaking process of manual feature engineering, and, as a result, has enjoyed considerable success in recent years. However, all the existing representation learning methods are based on the first-order network, that is, the network that only captures the pairwise interactions between the nodes. As a result, these methods may fail to incorporate non-Markovian higher order dependencies in the network. Thus, the embeddings that are generated may not accurately represent the underlying phenomena in a network, resulting in inferior performance in different inductive or transductive learning tasks. To address this challenge, this study presents higher order network embedding (HONEM), a higher order network (HON) embedding method that captures the non-Markovian higher order dependencies in a network. HONEM is specifically designed for the HON structure and outperforms other state-of-the-art methods in node classification, network reconstruction, link prediction, and visualization for networks that contain non-Markovian higher order dependencies

    Higher-order patterns of aquatic species spread through the global shipping network.

    No full text
    The introduction and establishment of nonindigenous species (NIS) through global ship movements poses a significant threat to marine ecosystems and economies. While ballast-vectored invasions have been partly addressed by some national policies and an international agreement regulating the concentrations of organisms in ballast water, biofouling-vectored invasions remain largely unaddressed. Development of additional efficient and cost-effective ship-borne NIS policies requires an accurate estimation of NIS spread risk from both ballast water and biofouling. We demonstrate that the first-order Markovian assumption limits accurate modeling of NIS spread risks through the global shipping network. In contrast, we show that higher-order patterns provide more accurate NIS spread risk estimates by revealing indirect pathways of NIS transfer using Species Flow Higher-Order Networks (SF-HON). Using the largest available datasets of non-indigenous species for Europe and the United States, we then compare SF-HON model predictions against those from networks that consider only first-order connections and those that consider all possible indirect connections without consideration of their significance. We show that not only SF-HONs yield more accurate NIS spread risk predictions, but there are important differences in NIS spread via the ballast and biofouling vectors. Our work provides information that policymakers can use to develop more efficient and targeted prevention strategies for ship-borne NIS spread management, especially as management of biofouling is of increasing concern

    On the Use of Real-World Datasets for Reaction Yield Prediction

    No full text
    The lack of publicly available, large, and unbiased datasets is a key bottleneck for the application of machine learning (ML) methods in synthetic chemistry. Data from electronic laboratory notebooks (ELNs) could provide less biased, large datasets, but no such datasets have been made publicly available. The first real-world dataset from the ELNs of a large pharmaceutical company is disclosed and its relationship to high-throughput experimentation (HTE) datasets is described. For chemical yield predictions, a key task in chemical synthesis, an attributed graph neural network (AGNN) performs as good or better than the best previous models on two HTE datasets for the Suzuki and Buchwald-Hartwig reactions. However, training of the AGNN on the ELN dataset does not lead to a predictive model. The implications of using ELN data for training ML-based models are discussed in the context of yield predictions
    corecore