24 research outputs found

    Interval observer versus set-membership approaches for fault detection in uncertain systems using zonotopes

    Get PDF
    This paper presents both analysis and comparison of the interval observer–based and set-membership approaches for the state estimation and fault detection (FD) in uncertain linear systems. The considered approaches assume that both state disturbance and measurement noise are modeled in a deterministic context following the unknown but bounded approach. The propagation of uncertainty in the state estimation is bounded through a zonotopic set representation. Both approaches have been mathematically related and compared when used for state estimation and FD. A case study based on a two-tanks system is employed for showing the relationship between both approaches while comparing their performancePeer ReviewedPostprint (author's final draft

    Discontinuous Feedback Linearization of an Electrically Driven Fast Robot Manipulator

    No full text
    A multivariable discontinuous feedback linearization approach is proposed to position control of an electrically driven fast robot manipulator. A desired performance is achieved by selecting a useful controller and suitable sampling rate and considering saturation for actuators. There is a high flexibility to apply the proposed control approach on different electrically driven manipulators. The control approach can guarantee the stability and satisfactory tracking performance. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a desired performance for control system under technical specifications

    Presentation of a Modified Boustrophedon Decomposition Algorithm for Optimal Configuration of Flat Fields to use in Path Planning Systems of Agricultural Vehicles

    No full text
    Introduction The demand of pre-determined optimal coverage paths in agricultural environments have been increased due to the growing application of field robots and autonomous field machines. Also coverage path planning problem (CPP) has been extensively studied in robotics and many algorithms have been provided in many topics, but differences and limitations in agriculture lead to several different heuristic and modified adaptive methods from robotics. In this paper, a modified and enhanced version of currently used decomposition algorithm in robotics (boustrophedon cellular decomposition) has been presented as a main part of path planning systems of agricultural vehicles. Developed algorithm is based on the parallelization of the edges of the polygon representing the environment to satisfy the requirements of the problem as far as possible. This idea is based on "minimum facing to the cost making condition" in turn, it is derived from encounter concept as a basis of cost making factors. Materials and Methods Generally, a line termed as a slice in boustrophedon cellular decomposition (BCD), sweeps an area in a pre-determined direction and decomposes the area only at critical points (where two segments can be extended to top and bottom of the point). Furthermore, sweep line direction does not change until the decomposition finish. To implement the BCD for parallelization method, two modifications were applied in order to provide a modified version of the boustrophedon cellular decomposition (M-BCD). In the first modification, the longest edge (base edge) is targeted, and sweep line direction is set in line with the base edge direction (sweep direction is set perpendicular to the sweep line direction). Then Sweep line moves through the environment and stops at the first (nearest) critical point. Next sweep direction will be the same as previous, If the length of those polygon's newly added edges, during the decomposition, are less than or equal to the base edge, otherwise a search is needed to choose a new base edge. This process is repeated until a complete coverage. The second modification is cutting the polygon in the location of the base edge to generate several ideal polygons beside the base edges. The algorithm was applied to a dataset (including 18 cases, ranging from simple-shaped to complex-shaped polygons) gathered from other studies and was compared with a split-merge algorithm which has been used in some other studies. The M-BCD algorithm was coded in C++ language using Microsoft Visual Studio 2013 software. Algorithm was run on a laptop with 2.5 GHz Intel(R) coreâ„¢ i5-4200M CPU, processor with 4 GB of RAM. Also Split-merge algorithm provided by Driscoll (2011) was coded. Two algorithms were applied to the dataset. Cost of coverage plan was calculated using cost function of U-shaped turns in study Jin and Tang (2010). In this paper machine-specific parameters were working width 10 m and minimum turning radius 5 m. Results and Discussion Based on the results, the proposed algorithm has low computational time (below 100 ms in dataset and runs many times (on average 75 times) faster than split-merge algorithm. Algorithm resulted in a calculated savings up to 12% and on average 2% than the split-merge algorithm. Another consequence from parallelization method was effectiveness of multi-optimal direction coverage pattern than a single-optimal direction coverage; a calculated savings up to 14% and 2% on average than a single optimal direction achieved. Algorithm was evaluated on several test cases in detail. Based on the results, it is possible to loose optimal solutions especially in the case of simple shaped environments (in terms of number of convex points and internal obstacles), for example case 10 in dataset, is a case with a number of orthogonal edges. Reviewing the algorithm and Figure 4 demonstrate that sweep line moves down from the first longest edge in top of the polygon, and it doesn't stop during the process until the whole area is covered with a single coverage path direction (parallel to the longest edge). As it can be seen, no decomposition is proposed, because sweep line has faced no critical points. Based on the results in Table 2, there is 8% (equal to 88m) more cost (in term of the non-effective distance) in this case than an optimal direction and the split-merge algorithm. There are similar cases in the dataset: number 9, 12 and 13. This condition rarely occurs in complex environments, but in general it can be prevented by using an evaluation step at the end of the decomposition process. Ideally, the cost of coverage plan must be significantly less than related costs of a single optimal direction. Unlike the simple cases, algorithm returns near the optimal solution, especially in the case of complex environments. A good example of this ability of the algorithm can be seen in Figure 6. This field is case 17 in the dataset. It has many edges (almost 90 edges) and several non-convex points and an internal irregular shaped obstacle. M-BCD algorithm in a very short time (87 ms) generated several near to ideal shaped sub-regions around the field. Algorithm resulted in a calculated saving of 5% than an optimal direction with minimum non-effective distance. We can see the solution of split-merge algorithm by Oksanen and Visala (2009) in Figure 6, it can be clearly seen that coverage pattern by M-BCD is very close to the high time-consuming and optimal split-merge algorithm by Oksanen and Visala (2009). It verifies that M-BCD is efficient and optimal. There are similar test cases as hard cases in which considerable savings has been achieved (cases 6, 8 and 14). Conclusions In this paper a modified decomposition algorithm as a main part of path planning systems in agricultural environments was presented. Proposed algorithm uses method of parallelization of the edges of polygon. This method is based on encounter concept and "minimum facing to cost making condition". Although the general problem had been proved to be NP-hard problem, the method has limited the search space correctly and effectively which resulted close to the optimal solutions quickly. Another advantage of the method is suitability of the solutions for any kind of machine and any polygonal flat field (and those which can be considered as flat fields)

    Analysis of different inputs share and determination of energy Indices in broilers production in Mashhad city

    No full text
    Introduction The high energy consumption is one of the serious problems in poultry industry. The poultry industry consume about five percent of total energy sources in different countries, with consideration of losses, it increases up to 16-20%. In the year 2003 also, the Iranian chicken meat consumption per capita was 13.3 kg, while in the year 2013 it increased to 25.9 kg (FAO, 2014). It shows that in the diet of Iranian people, the chicken meat has become a strategic food. Poultry industry is one of the biggest and most developed industries in Iran. In the past two decays, mainly due to population growth and increase demand of white meats, it is necessary to change and improve energy efficiency in this industry. Technical efficiency of broiler farms in the central region of Saudi Arabia was analyzed through stochastic frontier approach (Alrwis and Francis, 2003). They reported that many farms under study work lower than their total capacity. In the research, the output was chicken meat weight in the term of the kilogram per one period and the inputs were the number of chicks, feed, the total of all variable expenses and fixed input except chicks and feed and the total cost of fixed inputs including building, equipment and machinery used for the broiler houses. They found that the small and large size broiler farms in the Central Region of Saudi Arabia were produced chicken with mean technical efficiency 83 and 88%, respectively (Alrwis and Francis, 2003). Efficiency measurement of broiler production units in Hamadan province was investigated by Fotros and Solgi (2003). They reported that the minimum, maximum and mean technical efficiency under variable return to scale were 12.7, 100 and 64.4%, respectively. Their results showed that technical efficiency at 16.5 (14 units) and 42.35% (24 units) of farms were more than 90 and 70%, respectively (Fotros and Salgi, 2003). Khorasan Razavi province after Esfahan and Mazandaran provinces is the third largest producer of broilers in Iran. This research was performed because it is necessary to have energy consumption status; also there is a few data about broiler’s energy consumption in Mashhad. In this research, the data of Mashhad’s broilers was analyzed by Data Envelopment Analysis Method. The other objectives of this study were to separate efficient and inefficient units to use energy resource efficiently and determine total energy saving. Materials and Methods This study was performed in 2013 in Mashhad, Iran. The data were collected through interviews and questionnaires from 36 poultry farmers for a growing period of April to May. Input energies were the feed, fuel (gas and gas oil), electricity, labor, equipment and chicken, and the output energies were the chicken meat and the manure. The energy consumption for each element was calculated by multiplied amount of inputs/outputs to energy equivalents. Results and Discussion The total of input and output energies were obtained 125.2, 24.9 GJ/1000Birds, respectively. Energy indices such as energy ratio, energy efficiency and specific energy were determined to be 0.2, 0.019 kg/MJ and 52.55 MJ/kg, respectively. The highest share of energy consumption were 50.84 and 42.43%, for fuel (natural gas and diesel fuel) and feed respectively, the lowest share among the input energies were 0.39 and 0.06%, for chicken and labor respectively. Comparison of energy in three levels of farm sizes (≤15000, 15000-30000 and ≥30000 chicks) showed the energy ratio for large farms were higher than the other levels. Data Envelopment Analysis (DEA) was used to evaluate the poultry efficiency. The results showed that 13 poultry units had average technical efficiency (0.93) in the definition of Constant Returns to Scale (CRS), and 21 poultry units had pure technical efficiency (0.99) in the definition of Variable Returns to Scale (VRS). Conclusions The Fuel (natural gas and diesel fuel) consumption energy had the highest shares of energy consumption; it is because of the low efficient heating equipment in poultry houses and low fuel prices in Iran. Energy efficiency of broiler farms in Mashhad was obtained 0.2 that show low energy efficiency. Improvements in energy efficiency could be achieved by increasing yield or reducing inputs energies

    Predicting working days for secondary tillage and planting operation in fall

    No full text
    Introduction The working day is an important component in selection and analysis of farm machinery systems. The number of working days is affected by various factors such as climate, soil characteristics and type of operation. Daily soil moisture models based on weather long-term data and soil characteristics were almost used for calculating probability of working days. The goal of this study was to develop a simulation model to predict the number of working days for secondary tillage and planting operation in fall at 50, 80 and 90% probability levels. Materials and Methods A Simulation model was developed using 21 years weather data and soil characteristics for calculate daily soil moisture content in Research Station of Ferdowsi University of Mashhad. So soil moisture was calculated using daily soil water equation for top 25 centimeter of soil depth. Moisture equal or lower than 85% of soil field capacity and precipitation lower than 4 millimeter (local data) were considered as soil workability criteria. Then the working days were determined for secondary tillage and planting operation at 50, 80 and 90% probability levels in falls. The number of days at 50% probability was the mean over 21 years and the number of days at 80% and 90% were determined for each two weeks period as the average number of working days minus the product of t value and standard deviation of those numbers. Model Evaluation Evaluation of model included a comparison of predicted and the observed the number of working days in Research Station of Ferdowsi University of Mashhad during 2002-2010 and sensitivity analysis was implemented to test the effect of changes in soil workability criterion (80, 90, 95 and 100% of soil field capacity), drainage coefficient (25 % decrease and increase) and soil field capacity (40% increase) on simulation results. Results and Discussion Comparison of predicted and observed days showed that correlation coefficient was 0.998 and the difference between the simulated data and observed data was not significant at the 5% level. Results from sensitivity analysis in Table 3 showed that when soil workability, drainage coefficient and field capacity increased, the number of working days increased, but model sensitivity was very low to drainage coefficient and soil field capacity. In general, the most important factor is precipitation in this weather conditions. The number of working days for secondary tillage and planting operation for each period in fall are shown in Table 4. Conclusions A simulation model was developed for predicting the number of working days for secondary tillage and planting operation in fall. This model was based on weather long-term data and soil characteristics for the Research Station of Ferdowsi University of Mashhad. The most important factor was precipitation and the model had low sensitivity to drainage coefficient and soil field capacity. The number of working days in 50%, 80% and 90% probability levels for period of ten days was on average 9.94, 9.21, 8.57 days for 23th September to 22th October and 9.77, 8.02, 6.41 days for 23th October to 21th November and 9.68, 7.48 and 5.24 for 22th November to 21th December, respectively
    corecore