59 research outputs found

    Seeing the forest through the trees: prioritising potentially functional interactions from Hi-C.

    Get PDF
    Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.Ning Liu, Wai Yee Low, Hamid Alinejad, Rokny, Stephen Pederson, Timothy Sadlon, Simon Barry, and James Bree

    Optimization of blood handling and peripheral blood mononuclear cell cryopreservation of low cell number samples

    Get PDF
    Background: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. Methods: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 10⁶ cells/mL to 1.67 × 10⁶ cells/mL. Results: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 10⁶ cells/mL. Conclusion: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.Christopher M. Hope, Dao Huynh, Ying Ying Wong, Helena Oakey, Griffith Boord Perkins, Trung Nguyen, Sabrina Binkowski, Minh Bui, Ace Y.L. Choo, Emily Gibson, Dexing Huang, Ki Wook Kim, Katrina Ngui, William D. Rawlinson, Timothy Sadlon, Jennifer J. Couper, Megan A.S. Penno, Simon C. Barry, and on behalf of the ENDIA Study Grou

    Robust, reversible gene knockdown using a single lentiviral short hairpin RNA vector

    Get PDF
    Manipulation of gene expression is an invaluable tool to study gene function in vitro and in vivo. The application of small inhibitory RNAs to knock down gene expression provides a relatively simple, elegant, but transient approach to study gene function in many cell types as well as in whole animals. Short hairpin structures (shRNAs) are a logical advance as they can be expressed continuously and are hence suitable for stable gene knockdown. Drug-inducible systems have now been developed; however, application of the technology has been hampered by persistent problems with low or transient expression, leakiness or poor inducibility of the short hairpin, and lack of reversibility. We have developed a robust, versatile, single lentiviral vector tool that delivers tightly regulated, fully reversible, doxycycline-responsive knockdown of target genes (FOXP3 and MYB), using single short hairpin RNAs. To demonstrate the capabilities of the vector we targeted FOXP3 because it plays a critical role in the development and function of regulatory T cells. We also targeted MYB because of its essential role in hematopoiesis and implication in breast cancer progression. The versatility of this vector is hence demonstrated by knockdown of distinct genes in two biologically separate systems.Cheryl Y. Brown, Timothy Sadlon, Tessa Gargett, Elizabeth Melville, Rui Zhang, Yvette Drabsch, Michael Ling, Craig A. Strathdee, Thomas J. Gonda, and Simon C. Barr

    Primordial Germ Cell Specification from Embryonic Stem Cells

    Get PDF
    Background: Primordial germ cell (PGC) specification is the first crucial step in germ line development. However, owing to significant challenges regarding the in vivo system, such as the complex cellular environment and potential problems with embryo manipulation, it is desirable to generate embryonic stem (ES) cells that are capable of overcoming these aforementioned limitations in order to provide a potential in vitro model to recapitulate the developmental processes in vivo. Methodology and Principal Findings: Here, we studied the detailed process of PGC specification from stella-GFP ES cells. We first observed the heterogeneous expression of stella in ES cells. However, neither Stella-positive ES cells nor Stellanegative ES cells shared a similar gene expression pattern with either PGCs or PGC precursors. Second, we derived PGCs from ES cells using two differentiation methods, namely the attachment culture technique and the embryoid body (EB) method. Compared with PGCs derived via the attachment culture technique, PGCs derived via the EB method that had undergone the sequential erasure of Peg3 followed by Igf2r resulted in a cell line in which the expression dynamics of T, Fgf8 and Sox17, in addition to the expression of the epiblast markers, were more similar to the in vivo expression, thus demonstrating that the process of PGC derivation was more faithfully recapitulated using the EB method. Furthermore, we developed an in vitro model of PGC specification in a completely chemically defined medium (CDM) that indicated that BMP4 and Wnt3a promoted PGC derivation, whereas BMP8b and activinA had no observable effect on PGC derivation

    Heme-Oxygenases during Erythropoiesis in K562 and Human Bone Marrow Cells

    Get PDF
    In mammalian cells, heme can be degraded by heme-oxygenases (HO). Heme-oxygenase 1 (HO-1) is known to be the heme inducible isoform, whereas heme-oxygenase 2 (HO-2) is the constitutive enzyme. Here we investigated the presence of HO during erythroid differentiation in human bone marrow erythroid precursors and K562 cells. HO-1 mRNA and protein expression levels were below limits of detection in K562 cells. Moreover, heme was unable to induce HO-1, at the protein and mRNA profiles. Surprisingly, HO-2 expression was inhibited upon incubation with heme. To evaluate the physiological relevance of these findings, we analyzed HO expression during normal erythropoiesis in human bone marrow. Erythroid precursors were characterized by lack of significant expression of HO-1 and by progressive reduction of HO-2 during differentiation. FLVCR expression, a recently described heme exporter found in erythroid precursors, was also analyzed. Interestingly, the disruption in the HO detoxification system was accompanied by a transient induction of FLVCR. It will be interesting to verify if the inhibition of HO expression, that we found, is preventing a futile cycle of concomitant heme synthesis and catabolism. We believe that a significant feature of erythropoiesis could be the replacement of heme breakdown by heme exportation, as a mechanism to prevent heme toxicity

    FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells

    Get PDF
    The transcription factor FOXP3 has been identified as a tumour suppressor in the breast and prostate epithelia, but little is known about its specific mechanism of action. We have identified a feed-forward regulatory loop in which FOXP3 suppresses the expression of the oncogene SATB1. In particular, we demonstrate that SATB1 is not only a direct target of FOXP3 repression, but that FOXP3 also induces two miRs, miR-7 and miR-155, which specifically target the 3′-UTR of SATB1 to further regulate its expression. We conclude that FOXP3-regulated miRs form part of the mechanism by which FOXP3 prevents the transformation of the healthy breast epithelium to a cancerous phenotype. Approaches aimed at restoring FOXP3 function and the miRs it regulates could help provide new approaches to target breast cancer.N McInnes, TJ Sadlon, CY Brown, S Pederson, M Beyer, JL Schultze, S McColl, GJ Goodall and SC Barr

    Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation

    Get PDF
    Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.Marc Beyer... Timothy Sadlon...Simon C Barry... et al

    Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes

    Get PDF
    Members of ENDIA Study Group: Peter Baghurst, Simon Barry, Jodie Dodd, Maria Makrides for the University of Adelaide.BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.Megan AS Penno, Jennifer J Couper, Maria E Craig, Peter G Colman, William D Rawlinson, Andrew M Cotterill, Timothy W Jones, Leonard C Harrison and ENDIA Study Grou

    Kontrola bakteriologiczna urządzeń dozujących wodę po zastosowaniu zabiegów mycia i dezynfekcji

    No full text
    Przeprowadzono bakteriologiczne analizy wody pobieranej z urządzeń dozujących (dystrybutorów) opakowań o pojemności powyżej 5 litrów. Celem bada było określenie skuteczności zabiegów mycia i dezynfekcji w zależności od typu urządzeń. Próbki pobierano po przeprowadzeniu zabiegów mycia i dezynfekcji dystrybutorów. Woda w butli z dozownikiem stanowi integralny produkt oferowany klientom. Na końcową jej jakość wpływa więc czystość wody w opakowaniu oraz czystość urządzenia dozującego. Ze względu na budowę dystrybutory podzielono na dwa typy: I – urządzenia rozbieralne, w których wymiana części mających kontakt z wodą jest łatwa do wykonania, II – urządzenia nierozbieralne. Ustalono parametr oceny skuteczności zabiegów mycia i dezynfekcji urządzeń. Wykazano, że różnice w budowie określają metodę skutecznej dezynfekcji. Wszystkie urządzenia typu pierwszego po jednokrotnej dezynfekcji podawały niezmienioną pod względem bakteriologicznym wodę. Aby uzyskać podobny efekt w urządzeniach typu II, konieczne było powtórzenie zabiegu dezynfekcji. Z powodu wykrycia w wodzie z urządzenia po dezynfekcji bakterii z grupy coli i Psudomonas aeruginosa, z 308 urządzeń typu II do powtórnego zabiegu przekazano 99. Wykazano, że sposób wykonania zabiegu mycia i dezynfekcji jest uzależniony od konstrukcji urządzeń dozujących.A series of bacteriological analyses of water collected from distributors applied to dose water from containers of more than 5 litres volume. The objective of the laboratory studies was to determine the washing and disinfection efficiency with regard to a special type of the system used. Water samples were collected after the completed cleaning and disinfection of the distributors. Water in the bottle and a distributor constitute one integral unit offered to customers. Thus, the final water quality is, in fact, influenced by the two factors: purity of water in the container and distributor’s cleanness. With regard to the structure of the distributors, they can be divided into two types. The first type comprises distributors, in which the exchange of the elements directly contacting water is easy to perform, and the second type: devices in which the replacement of spare parts is impossible. A parameter called evaluation efficiency of the cleaning and disinfection procedures was set. It was proved that some differences in the structure of the distributors determine the selection of an efficient disinfection method. Distributors of the first type were disinfected once, and after this treatment they distributed water of no microbiological changes. As for the distributors of the second class, it was necessary to disinfect them twice in order to obtain the same effect as the single disinfection treatment of the first class distributors. 99 distributors of the second class, out of totally 308 distributors checked, needed to be disinfected for the second time because water from them contained coli bacteria (Psudomonas aeruginosa). The investigation performed shows that the method of washing and disinfecting distributors depends on the structure of the distributors

    Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis

    No full text
    Erythroid tissue is the major site of heme production in the body. The synthesis of heme and globin chains is coordinated at both the transcriptional and post-transcriptional levels to ensure that virtually no free heme or globin protein accumulates. The key rate-controlling enzyme of the heme biosynthetic pathway is 5-aminolevulinate synthase (ALAS) and an erythroid-specific isoform (ALAS2) is up-regulated during erythropoiesis. Differentiation of embryonic stem cells with a disrupted ALAS2 gene has established that expression of this gene is critical for erythropoiesis and cannot be compensated by expression of the ubiquitous isoform of the enzyme (ALAS1). Interestingly, heme appears to be important for expression of globin and other late erythroid genes and for erythroid cell differentiation although the mechanism of this effect is not clear. Transcriptional control elements that regulate the human gene for ALAS2 have been identified both in the promoter and in intronic enhancer regions. Subsequent translation of the ALAS2 mRNA is dependent on an adequate iron supply. The mechanism by which transcription of the gene for ALAS2 is increased by erythropoietin late in erythropoiesis remains an interesting issue. Erythropoietin action may result in altered levels of critical erythroid transcription factors or modulate the phosphorylation/acetylation status of these factors. Defects in the coding region of the gene for ALAS2 underlie the disease state X-linked sideroblastic anemia. In this review, we focus on the regulation and function of erythroid-specific 5-aminolevulinate synthase during erythropoiesis and its role in the X-linked sideroblastic anemia
    corecore