158 research outputs found

    Close-packed Arrays of Transition-edge X-ray Microcalorimeters with High Spectral Resolution at 5.9 keV

    Get PDF
    We present measurements of high fill-factor arrays of superconducting transition-edge x-ray microcalorimeters designed to provide rapid thermalization of the x-ray energy. We designed an x-ray absorber that is cantilevered over the sensitive part of the thermometer itself, making contact only at normal metal-features. With absorbers made of electroplated gold, we have demonstrated an energy resolution between 2.4 and 3.1 eV at 5.9 keV on 13 separate pixels. We have determined the thermal and electrical parameters of the devices throughout the superconducting transition, and, using these parameters, have modeled all aspects of the detector performance

    Thermal Fluctuation Noise in Mo/Au Superconducting Transition-Edge Sensor Microcalorimeters

    Get PDF
    In many superconducting transition-edge sensor (TES) microcalorimeters, the measured electrical noise exceeds theoretical estimates based on a thermal model of a single body thermally connected to a heat bath. Here, we report on noise and complex impedance measurements of a range of designs of TESs made with a Mo/Au bilayer. We have fitted the measured data using a two-body model, where the x-ray absorber and the TES are connected by an internal thermal conductance Gae. We find that the so-called excess noise measured in these devices is consistent with the noise generated from the internal thermal fluctuations between the x-ray absorber and the TES. Our fitted parameters are consistent with the origin of Gae being from the finite thermal conductance of the TES itself. These results suggest that even in these relatively low resistance Mo/Au TESs, the internal thermal conductance of the TES may add significant additional noise and could account for all the measured excess noise. Furthermore, we find that around regions of the superconducting transition with rapidly changing derivative of resistance with respect to temperature, an additional noise mechanism may dominate. These observations may lead to a greater understanding of TES devices and allow the design of TES microcalorimeters with improved performance

    Development of Kilo-Pixel Arrays of Transition-Edge Sensors for X-Ray Spectroscopy

    Get PDF
    We are developing kilo-pixel arrays of transition-edge sensor (TES) microcalorimeters for future X-ray astronomy observatories or for use in laboratory astrophysics applications. For example, Athena/XMS (currently under study by the european space agency) would require a close-packed 32x32 pixel array on a 250-micron pitch with < 3.0 eV full-width-half-maximum energy resolution at 6 keV and at count-rates of up to 50 counts/pixel/second. We present characterization of 32x32 arrays. These detectors will be readout using state of the art SQUID based time-domain multiplexing (TDM). We will also present the latest results in integrating these detectors and the TDM readout technology into a 16 row x N column field-able instrument

    Fabrication of a Hybrid Transition Edge Sensor Array for Lynx

    Get PDF
    Lynx is a proposed NASA X-Ray telescope flight mission aimed at achieving state-of-the-art angular and energy resolution with a 100 kilopixel array to probe the hot energetic young universe in unprecedented detail. To achieve these goals, our team plans on leveraging our current work in development of the focal plane for the Athena X-Ray Integral Field Unit (X-IFU) while advancing the state-of-the-art in transition edge sensor (TES) X-ray detector technology. The TES is an optimal technology for achieving both high energy and fine angular resolution at the same time because pixel features can be made extremely small and the absorber which dominates the heat capacity can be tuned to meet resolution requirements. Specifically, the proposed mission concept calls for a hybrid detector of three different arrays fabricated in the same planar process in one focal plane and optimized for different science goals. The main arrays consist of 5x5 hydras, 25 pixels of 4 micron thick Au absorbers each with a different thermal link to one common TES. The outer array has absorbers on a 50-micron pitch for most of the 5 arc-minute field-of-view, and the inner array has 25-micron absorbers for the central 1 arc-minute region. A high resolution array consisting of single pixel 1 micron thick Au absorbers on 50-micron pitch will lie off to the side. Reading out an array of this magnitude will likely require improvements in indium bump bonding to superconducting flexible wiring. Fabrication of absorbers of two different sizes requires electroplating through a photoresist mold by careful tuning of the current density to achieve uniform flat absorbers on a fine pitch scale, followed by ion milling to yield narrow streets separating the pixels while preserving high quantum efficiency. We report on progress made at fabricating the hybrid array with different absorber sizes and thicknesses. Further, we also report on ongoing work to adequately heat sink the pixels with backside wire bonding and copper coating. We also report on work to improve detector pixel yield and top side indium bump bonding to flexible wiring

    The Effects of Normal Metal Stripes on TES Performance

    Get PDF
    Exploring the effects of size and geometry of normal metal features on the transition shapes and performance of transition-edge sensor microcalorimeters. The spectral resolution of transition-edge sensor (TES) microcalorimeters is very sensitive to the specific dependencies of the resistance R in the superconducting transition on the current I, magnetic field B, and temperature T. In particular, it has been shown that transitions that are very steep in (R,T) space lead to a significant noise term, in excess of conventional expectations. This so-called unexplained noise is known to be reduced by the addition of normal metal stripes across the TES perpendicular to the direction of current flow. These normal metal stripes have been shown to drastically alter the oscillatory patterns seen in measurements of the critical current as a function of magnetic field. However, there are many remaining questions about the exact impact of the stripes on current distributions within the TES, the Fraunhofer pattern and, therefore, the shape of the R(I, B, T) surface. Through measurements of the resistance under DC bias of TES devices of various sizes, with different stripe patterns and dimensions, we will discuss how these stripes can affect the R(I, B, T) surface. In addition, using measurements and analysis of the noise spectra of various devices we will present how these changes to the stripe pattern may affect the performance of the TES. In particular, we will discuss strategies to reduce the presence of localized discontinuities in the derivative of R, associated with increased noise, while maintaining the globally low levels of unexplained noise currently achieved with conventional metal stripe patterns. Implementing these strategies is a path towards producing large arrays with highly uniform transitions and high spectral resolution. These large uniform arrays will be required for future x-ray astronomy applications, such as the X-IFU on ATHENA

    Small, Fast TES Microcalorimeters with Unprecedented X-ray Spectral Performance

    Get PDF
    Driven initially by the desire for X-ray microcalorimeter arrays suitable for imaging the dynamic solar corona, we have developed a transition-edge-sensor (TES) microcalorimeter optimization that exhibits a unique combination of high spectral resolving power and a wide X-ray bandpass. These devices have achieved spectral performance of dE approximately 1.3 eV FWHM at 1.5 keV, 1.6 eV at 6 keV, and 2.0 eV at 8 keV, using small TESs (e.g., approximately 35 micron x 35 micron) that operate in a regime in which the superconducting transition is highly current dependent. In order to accommodate high X-ray count rates, the devices sit directly on a solid substrate instead of on membranes, and we use an embedded heatsinking layer to reduce pixel-to-pixel crosstalk. We will present results from devices with a range of TES and absorber sizes, and from device wafers with varied embedded heatsink materials. This contribution will focus on count-rate capabilities, including a discussion of the trade-off between count rate and energy resolution, and the heatsinking design. We will also present preliminary tests of array readout using a code-division multiplexed SQUID readout scheme, which may be necessary to enable large arrays of these fast devices

    The Transition-Edge-Sensor Array for the Micro-X Sounding Rocket

    Get PDF
    The Micro-X sounding rocket program will fly a 128-element array of transition-edge-sensor microcalorimeters to enable high-resolution X-ray imaging spectroscopy of the Puppis-A supernova remnant. To match the angular resolution of the optics while maximizing the field-of-view and retaining a high energy resolution (< 4 eV at 1 keV), we have designed the pixels using 600 x 600 sq. micron Au/Bi absorbers, which overhang 140 x 140 sq. micron Mo/Au sensors. The data-rate capabilities of the rocket telemetry system require the pulse decay to be approximately 2 ms to allow a significant portion of the data to be telemetered during flight. Here we report experimental results from the flight array, including measurements of energy resolution, uniformity, and absorber thermalization. In addition, we present studies of test devices that have a variety of absorber contact geometries, as well as a variety of membrane-perforation schemes designed to slow the pulse decay time to match the telemetry requirements. Finally, we describe the reduction in pixel-to-pixel crosstalk afforded by an angle-evaporated Cu backside heatsinking layer, which provides Cu coverage on the four sidewalls of the silicon wells beneath each pixel

    Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    Get PDF
    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution
    • …
    corecore