153 research outputs found

    Tin Sulfide (SnS) Films Deposited by an Electric Field-Assisted Continuous Spray Pyrolysis Technique with Application as Counter Electrodes in Dye-Sensitized Solar Cells

    Get PDF
    The deposition of tin sulfide (SnS) nanostructured films using a continuous spray pyrolysis technique is reported with an electric field present at the nozzle for influencing the atomization and the subsequent film deposition. In the absence of the electric field, the X-ray diffraction pattern shows the orthorhombic phase of SnS with a crystallographic preferred orientation along the (040) plane. The application of the electric field results in significant improvement in the morphology and a reduction in surface roughness (28 nm from 37 nm). The direct optical band gap of the films deposited with and without the electric field is estimated to be 1.5 and 1.7 eV, respectively. The photothermal deflection spectroscopy studies show a lower energetic disorder (no Urbach tail), which indicates an annealing effect in the SnS films deposited under the electric field. The improvement in the film properties is reflected in the expected improvement in the power conversion efficiency (PCE) of dye-sensitized solar cells fabricated using the SnS film as a counter electrode. An enhancement of PCE from 2.07% for the film deposited without the electric field to 2.89% for the film deposited with the electric field shows the role of the electric field in the fabrication of improved SnS film

    Electroluminescence from Organometallic Lead Halide Perovskite-Conjugated Polymer Diodes

    Get PDF
    Organometallic lead perovskite-based solar cells can be converted to light-emitting diodes by engineering the current density. Diodes are fabricated with adjacent perovskite and conjugated polymer layers using orthogonal solvents. Under forward bias, these devices show simultaneous emission from both the luminescent conjugated polymer and the perovskite, providing direct information on electron and hole recombination as a function of device architecture and bias voltage.We gratefully acknowledge funding from the Engineering and Physical Sciences Research Council (EPSRC). A.K. acknowledges NRF-Singapore for a scholarship.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/aelm.20150000

    What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    Get PDF
    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.Engineering and Physical Sciences Research Council, Winton Programme for the Physics of Sustainability, University of Cambridge, China Scholarship Council, SoltechThis is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.6b0513

    A Novel Mitigation Mechanism for Photo-Induced Trapping in an Anthradithiophene Derivative Using Additives

    Get PDF
    © 2020 Wiley-VCH GmbH A novel trap mitigation mechanism using molecular additives, which relieves a characteristic early turn-on voltage in a high-mobility p-type acene-based small-molecule organic semiconductor, when processed from hydrous solvents, is reported. The early turn-on voltage is attributed to photo-induced trapping, and additive incorporation is found to be very effective in suppressing this effect. Remarkably, the molecular additive does not disturb the charge transport properties of the small-molecule semiconductor, but rather intercalates in the crystal structure. This novel technique allows for the solution-processing of small molecular semiconductors from hydrous solvents, greatly simplifying manufacturing processes for large-area electronics. Along with various electric and spectroscopic characterization techniques, simulations have given a deeper insight into the trap mitigation effect induced by the additive

    Visualizing excitations at buried heterojunctions in organic semiconductor blends

    Get PDF
    Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron–hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron–hole pairs into free charges against the Coulomb interaction.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Winton Programme for the Physics of Sustainability. A.C.J. thanks the University of Cambridge for funding (CHESS). Synchrotron measurements were undertaken on the SAXS beamline at the Australian Synchrotron, Victoria, Australia and we acknowledge the help of N. Lal with the measurements. S.H. thanks the framework project Soltech for funding
    corecore