18 research outputs found

    Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles

    Get PDF
    Designing simple, sensitive, fast, and inexpensive readout devices to detect biological molecules and biomarkers is crucial for early diagnosis and treatments. Here, we have studied the interaction of the chiral liquid crystal (CLC) and biomolecules at the liquid crystal (LC)-droplet interface. CLC droplets with high and low chirality were prepared using a microfluidic device. We explored the reconfiguration of the CLC molecules confined in droplets in the presence of 1,2-diauroyl-sn-glycero3-phosphatidylcholine (DLPC) phospholipid. Cross-polarized optical microscopy and spectrometry techniques were employed to monitor the effect of droplet size and DLPC concentration on the structural reorganization of the CLC molecules. Our results showed that in the presence of DLPC, the chiral LC droplets transition from planar to homeotropic ordering through a multistage molecular reorientation. However, this reconfiguration process in the low-chirality droplets happened three times faster than in high-chirality ones. Applying spectrometry and image analysis, we found that the change in the chiral droplets’ Bragg reflection can be correlated with the CLC–DLPC interactions

    Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles

    Get PDF
    Designing simple, sensitive, fast, and inexpensive readout devices to detect biological molecules and biomarkers is crucial for early diagnosis and treatments. Here, we have studied the interaction of the chiral liquid crystal (CLC) and biomolecules at the liquid crystal (LC)-droplet interface. CLC droplets with high and low chirality were prepared using a microfluidic device. We explored the reconfiguration of the CLC molecules confined in droplets in the presence of 1,2-diauroyl-sn-glycero3-phosphatidylcholine (DLPC) phospholipid. Cross-polarized optical microscopy and spectrometry techniques were employed to monitor the effect of droplet size and DLPC concentration on the structural reorganization of the CLC molecules. Our results showed that in the presence of DLPC, the chiral LC droplets transition from planar to homeotropic ordering through a multistage molecular reorientation. However, this reconfiguration process in the low-chirality droplets happened three times faster than in high-chirality ones. Applying spectrometry and image analysis, we found that the change in the chiral droplets’ Bragg reflection can be correlated with the CLC–DLPC interactions

    LCPOM: Precise Reconstruction of Polarized Optical Microscopy Images of Liquid Crystals

    Full text link
    When viewed with a cross-polarized optical microscope (POM), liquid crystals display interference colors and complex patterns that depend on the material's microscopic orientation. That orientation can be manipulated by application of external fields, which provides the basis for applications in optical display and sensing technologies. The color patterns themselves have a high information content. Traditionally, however, calculations of the optical appearance of liquid crystals have been performed by assuming that a single-wavelength light source is employed, and reported in a monochromatic scale. In this work, the original Jones matrix method is extended to calculate the colored images that arise when a liquid crystal is exposed to a multi-wavelength source. By accounting for the material properties, the visible light spectrum and the CIE color matching functions, we demonstrate that the proposed approach produces colored POM images that are in quantitative agreement with experimental data. Results are presented for a variety of systems, including radial, bipolar, and cholesteric droplets, where results of simulations are compared to experimental microscopy images. The effects of droplet size, topological defect structure, and droplet orientation are examined systematically. The technique introduced here generates images that can be directly compared to experiments, thereby facilitating machine learning efforts aimed at interpreting LC microscopy images, and paving the way for the inverse design of materials capable of producing specific internal microstructures in response to external stimuli.Comment: 12 pages, 5 figures (main text). 6 pages, 6 figures (appendices

    Chiral Liquid Crystal Microdroplets for Sensing Phospholipid Amphiphiles

    No full text
    Designing simple, sensitive, fast, and inexpensive readout devices to detect biological molecules and biomarkers is crucial for early diagnosis and treatments. Here, we have studied the interaction of the chiral liquid crystal (CLC) and biomolecules at the liquid crystal (LC)-droplet interface. CLC droplets with high and low chirality were prepared using a microfluidic device. We explored the reconfiguration of the CLC molecules confined in droplets in the presence of 1,2-diauroyl-sn-glycero3-phosphatidylcholine (DLPC) phospholipid. Cross-polarized optical microscopy and spectrometry techniques were employed to monitor the effect of droplet size and DLPC concentration on the structural reorganization of the CLC molecules. Our results showed that in the presence of DLPC, the chiral LC droplets transition from planar to homeotropic ordering through a multistage molecular reorientation. However, this reconfiguration process in the low-chirality droplets happened three times faster than in high-chirality ones. Applying spectrometry and image analysis, we found that the change in the chiral droplets’ Bragg reflection can be correlated with the CLC–DLPC interactions

    Engineering Nano/Microscale Chiral Self-Assembly in 3D Printed Constructs

    No full text
    Highlights To precisely engineer complex helical hierarchies at nano/microscales, reactive inks with chiral nematic anisotropy are designed for 3D printing. The phase transformations and chiral evolution in response to parallel and orthogonal shear forces are meticulously investigated to finely adjust the 3D printing parameters for programming oriented chiral assemblies. The interplay between chiral relaxation dynamics and photo-polymerization kinetics is finely tuned to enable well-controlled chiral reformation, while simultaneously ensuring high print quality

    Water Flux Induced Reorientation of Liquid Crystals

    No full text
    It is well understood that the adsorption of solutes at the interface between a bulk liquid crystal phase and an aqueous phase can lead to orientational or anchoring transitions. A different principle is introduced here, whereby a transient reorientation of a thermotropic liquid crystal is triggered by a spontaneous flux of water across the interface. A critical water flux can be generated by the addition of an electrolyte to the bulk aqueous phase, leading to a change in the solvent activity; water is then transported through the liquid crystal phase and across the interface. The magnitude of the spontaneous water flux can be controlled by the concentration and type of solutes, as well as the rate of salt addition. These results present new, previously unappreciated fundamental principles that could potentially be used for the design of materials involving transient gating mechanisms, including biological sensors, drug delivery systems, separation media, and molecular machines
    corecore