488 research outputs found

    Identification of a selective G1-phase benzimidazolone inhibitor by a senescence-targeted virtual screen using artificial neural networks

    Get PDF
    Cellular senescence is a barrier to tumorigenesis in normal cells and tumour cells undergo senescence responses to genotoxic stimuli, which is a potential target phenotype for cancer therapy. However, in this setting, mixed-mode responses are common with apoptosis the dominant effect. Hence, more selective senescence inducers are required. Here we report a machine learning-based in silico screen to identify potential senescence agonists. We built profiles of differentially affected biological process networks from expression data obtained under induced telomere dysfunction conditions in colorectal cancer cells and matched these to a panel of 17 protein targets with confirmatory screening data in PubChem. We trained a neural network using 3517 compounds identified as active or inactive against these targets. The resulting classification model was used to screen a virtual library of ~2M lead-like compounds. 147 virtual hits were acquired for validation in growth inhibition and senescence-associated β-galactosidase (SA-β-gal) assays. Among the found hits a benzimidazolone compound, CB-20903630, had low micromolar IC50 for growth inhibition of HCT116 cells and selectively induced SA-β-gal activity in the entire treated cell population without cytotoxicity or apoptosis induction. Growth suppression was mediated by G1 blockade involving increased p21 expression and suppressed cyclin B1, CDK1 and CDC25C. Additionally, the compound inhibited growth of multicellular spheroids and caused severe retardation of population kinetics in long term treatments. Preliminary structure-activity and structure clustering analyses are reported and expression analysis of CB-20903630 against other cell cycle suppressor compounds suggested a PI3K/AKT-inhibitor-like profile in normal cells, with different pathways affected in cancer cells

    Enrichment of Spermatogonial Stem Cells using Side Population in Teleost

    Get PDF
    Spermatogenesis originates from a small population of spermatogonial stem cells; this population can maintain continuous sperm production throughout the life of fish via self-renewal and differentiation. Despite their biological importance, spermatogonial stem cells are not thoroughly characterized because they are difficult to distinguish from their progeny 5 cells that become committed to differentiation. We previously established a novel technique for germ cell transplantation to identify spermatogonial stem cells based on their colonizing activity and their ability to initiate donor-derived gametogenesis in the rainbow trout (Oncorhynchus mykiss). Although spermatogonial stem cells can be retrospectively identified after transplantation, there is currently no technique to prospectively enrich for or purify spermatogonial stem cells. Here, we describe a method for spermatogonial stem-cell enrichment using side-population. With optimized Hoechst 33342 staining conditions, we successfully identified side-population cells among type A spermatogonia. Side-population cells were transcriptomically and morphologically distinct from non-side-population cells. To functionally determine whether the transplantable spermatogonial stem cells were enriched in the side-population fraction, we compared the colonization activity of side-population cells with that of non-side-population cells. Colonization efficiency was significantly higher with side-population cells than with non-side-population cells or with total type A spermatogonia. In addition, side-population cells could produce billions of sperm in recipient. These results indicated that transplantable spermatogonial stem cells were enriched in the side-population fraction. This method will provide biological information that may advance our understanding of spermatogonial stem 20 cells in teleosts. Additionally, this technique will increase the efficiency of germ-cell transplantation used in surrogate broodstock technology

    LMTK3 represses tumor suppressor-like genes through chromatin remodeling in breast cancer

    Get PDF
    LMTK3 is an oncogenic receptor tyrosine kinase (RTK) implicated in various types of cancer, including breast, lung, gastric, and colorectal cancer. It is local-ized in different cellular compartments, but its nuclear function has not been investigated so far. We mapped LMTK3 binding across the genome using ChIP-seq and found that LMTK3 binding events are corre-lated with repressive chromatin markers. We further identified KRAB-associated protein 1 (KAP1) as a binding partner of LMTK3. The LMTK3/KAP1 interac-tion is stabilized by PP1a, which suppresses KAP1 phosphorylation specifically at LMTK3-associated chromatin regions, inducing chromatin condensation and resulting in transcriptional repression of LMTK3-bound tumor suppressor-like genes. Furthermore, LMTK3 functions at distal regions in tethering the chromatin to the nuclear periphery, resulting in H3K9me3 modification and gene silencing. In sum-mary, we propose a model where a scaffolding func-tion of nuclear LMTK3 promotes cancer progression through chromatin remodeling

    Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence.

    Get PDF
    Senescence is a stress-responsive form of stable cell cycle exit. Senescent cells have a distinct gene expression profile, which is often accompanied by the spatial redistribution of heterochromatin into senescence-associated heterochromatic foci (SAHFs). Studying a key component of the nuclear lamina lamin B1 (LMNB1), we report dynamic alterations in its genomic profile and their implications for SAHF formation and gene regulation during senescence. Genome-wide mapping reveals that LMNB1 is depleted during senescence, preferentially from the central regions of lamina-associated domains (LADs), which are enriched for Lys9 trimethylation on histone H3 (H3K9me3). LMNB1 knockdown facilitates the spatial relocalization of perinuclear H3K9me3-positive heterochromatin, thus promoting SAHF formation, which could be inhibited by ectopic LMNB1 expression. Furthermore, despite the global reduction in LMNB1 protein levels, LMNB1 binding increases during senescence in a small subset of gene-rich regions where H3K27me3 also increases and gene expression becomes repressed. These results suggest that LMNB1 may contribute to senescence in at least two ways due to its uneven genome-wide redistribution: first, through the spatial reorganization of chromatin and, second, through gene repression

    Non-coding telomeric and subtelomeric transcripts are differentially regulated by telomeric and heterochromatin assembly factors in fission yeast

    Get PDF
    While telomere repeat-containing non-coding RNA has been identified in a variety of eukaryotes, its biological role is not yet clear. We have identified telomeric transcripts in fission yeast, a model system that combines precise genetic manipulability with telomeres remarkably similar to those of human. Like human and budding yeast, fission yeast harbours a population of telomeric RNA molecules containing G-rich telomeric repeats transcribed from the subtelomere to the telomere. In addition, we detect substantial levels of C-rich telomeric RNA whose appearance is independent of the RNA-dependent RNA polymerase, suggesting that the telomere repeats themselves serve as promoter sites; multiple distinct subtelomeric RNAs are also present. The regulation of these transcripts depends on the telomere-associated proteins Taz1 and Rap1, as deletion of taz1+ or rap1+ leads to increased levels of both telomere repeat-containing and subtelomeric transcripts. In contrast, loss of the heterochromatin proteins Swi6 or Clr4 or the telomerase regulator Rif1 results in elevated subtelomeric RNA levels while telomere-repeat containing transcript levels remain repressed. Coupled with the large body of knowledge surrounding the functions of telomeric and heterochromatin factors in fission yeast, these in vivo analyses suggest testable models for the roles of TERRA in telomere function

    Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex

    Get PDF
    Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin

    Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium

    Get PDF
    In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium

    A 'synthetic-sickness' screen for senescence re-engagement targets in mutant cancer backgrounds.

    Get PDF
    Senescence is a universal barrier to immortalisation and tumorigenesis. As such, interest in the use of senescence-induction in a therapeutic context has been gaining momentum in the past few years; however, senescence and immortalisation remain underserved areas for drug discovery owing to a lack of robust senescence inducing agents and an incomplete understanding of the signalling events underlying this complex process. In order to address this issue we undertook a large-scale morphological siRNA screen for inducers of senescence phenotypes in the human melanoma cell line A375P. Following rescreen and validation in a second cancer cell line, HCT116 colorectal carcinoma, a panel of 16 of the most robust hits were selected for further validation based on significance and the potential to be targeted by drug-like molecules. Using secondary assays for detection of senescence biomarkers p21, 53BP1 and senescence associated beta-galactosidase (SAβGal) in a panel of HCT116 cell lines carrying cancer-relevant mutations, we show that partial senescence phenotypes can be induced to varying degrees in a context dependent manner, even in the absence of p21 or p53 expression. However, proliferation arrest varied among genetic backgrounds with predominantly toxic effects in p21 null cells, while cells lacking PI3K mutation failed to arrest. Furthermore, we show that the oncogene ECT2 induces partial senescence phenotypes in all mutant backgrounds tested, demonstrating a dependence on activating KRASG13D for growth suppression and a complete senescence response. These results suggest a potential mechanism to target mutant KRAS signalling through ECT2 in cancers that are reliant on activating KRAS mutations and remain refractory to current treatments

    Autophagy mediates degradation of nuclear lamina

    Get PDF
    Z.D. is supported by a fellow award from the Leukemia & Lymphoma Society. B.C.C. is supported by career development awards from the Dermatology Foundation, Melanoma Research Foundation, and American Skin Association. S.L.B., P.D.A. and R.M. are supported by NIA P01 grant (P01AG031862). S.L.B. is also supported by NIH R01 CA078831. R.D.G. is supported by R01 GM106023 and the Progeria Research Foundation

    H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases

    Get PDF
    Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci
    corecore