38 research outputs found

    Repurposing the Ebola and Marburg Virus Inhibitors Tilorone, Quinacrine, and Pyronaridine: In Vitro Activity against SARS-CoV-2 and Potential Mechanisms

    Get PDF
    Severe acute respiratory coronavirus 2 (SARS-CoV-2) is a newly identified virus that has resulted in over 2.5 million deaths globally and over 116 million cases globally in March, 2021. Small-molecule inhibitors that reverse disease severity have proven difficult to discover. One of the key approaches that has been widely applied in an effort to speed up the translation of drugs is drug repurposing. A few drugs have shown in vitro activity against Ebola viruses and demonstrated activity against SARS-CoV-2 in vivo. Most notably, the RNA polymerase targeting remdesivir demonstrated activity in vitro and efficacy in the early stage of the disease in humans. Testing other small-molecule drugs that are active against Ebola viruses (EBOVs) would appear a reasonable strategy to evaluate their potential for SARS-CoV-2. We have previously repurposed pyronaridine, tilorone, and quinacrine (from malaria, influenza, and antiprotozoal uses, respectively) as inhibitors of Ebola and Marburg viruses in vitro in HeLa cells and mouse-adapted EBOV in mice in vivo. We have now tested these three drugs in various cell lines (VeroE6, Vero76, Caco-2, Calu-3, A549-ACE2, HUH-7, and monocytes) infected with SARS-CoV-2 as well as other viruses (including MHV and HCoV 229E). The compilation of these results indicated considerable variability in antiviral activity observed across cell lines. We found that tilorone and pyronaridine inhibited the virus replication in A549-ACE2 cells with IC50 values of 180 nM and IC50 198 nM, respectively. We used microscale thermophoresis to test the binding of these molecules to the spike protein, and tilorone and pyronaridine bind to the spike receptor binding domain protein with Kd values of 339 and 647 nM, respectively. Human Cmax for pyronaridine and quinacrine is greater than the IC50 observed in A549-ACE2 cells. We also provide novel insights into the mechanism of these compounds which is likely lysosomotropic

    <i>In vitro</i> antiviral activity of the anti-HCV drugs daclatasvir and sofosbuvir against SARS-CoV-2, the aetiological agent of COVID-19

    Get PDF
    BackgroundCurrent approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity.MethodsSARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19.ResultsDaclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 μM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans.ConclusionsDaclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy

    Fluorine Atoms on C6H5-Corrole Affect the Interaction with Mpro and PLpro Proteases of SARS-CoV-2: Molecular Docking and 2D-QSAR Approaches

    No full text
    The chymotrypsin-like cysteine protease (3CLpro, also known as main protease&mdash;Mpro) and papain-like protease (PLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been used as the main targets for screening potential synthetic inhibitors for posterior in vitro evaluation of the most promising compounds. In this sense, the present work reports for the first time the evaluation of the interaction between Mpro/PLpro with a series of 17 porphyrin analogues-corrole (C1), meso-aryl-corrole (C2), and 15 fluorinated-meso-aryl-corrole derivatives (C3&ndash;C17) via molecular docking calculations. The impact of fluorine atoms on meso-aryl-corrole structure was also evaluated in terms of binding affinity and physical-chemical properties by two-dimensional quantitative structure&ndash;activity relationship (2D-QSAR). The presence of phenyl moieties increased the binding capacity of corrole for both proteases and depending on the position of fluorine atoms might impact positively or negatively the binding capacity. For Mpro the para-fluorine atoms might decrease drastically the binding capacity, while for PLpro there was a certain increase in the binding affinity of fluorinated-corroles with the increase of fluorine atoms into meso-aryl-corrole structure mainly from tri-fluorinated insertions. The 2D-QSAR models indicated two separated regions of higher and lower affinity for Mpro:C1&ndash;C17 based on dual electronic parameters (&sigma;I and &sigma;R), as well as one model was obtained with a correlation between the docking score value of Mpro:C2&ndash;C17 and the corresponding 13C nuclear magnetic resonance (NMR) chemical shifts of the sp2 carbon atoms (&delta;C-1 and &delta;C-2) of C2&ndash;C17. Overall, the fluorinated-meso-aryl-corrole derivatives showed favorable in silico parameters as potential synthetic compounds for future in vitro assays on the inhibition of SARS-CoV-2 replication

    Detection of the influenza A(H1N1)pdm09 virus carrying the K-15E, P83S and Q293H mutations in patients who have undergone bone marrow transplant.

    No full text
    The 2009 pandemic influenza A(H1N1)pdm09 virus emerged and caused considerable morbidity and mortality in the third world, especially in Brazil. Although circulating strains of A(H1N1)pdm09 are A/California/04/2009-like (CA-04-like) viruses, various studies have suggested that some mutations in the viral hemagglutinin (HA) may be associated with enhanced severity and fatality. This phenomenon is particularly challenging for immunocompromised individuals, such as those who have undergone bone marrow transplant (BMT), because they are more likely to display worse clinical outcomes to influenza infection than non-immunocompromised individuals. We studied the clinical and viral aspects of post-BMT patients with confirmed A(H1N1)pdm09 diagnosis in the largest cancer hospital in Brazil. We found a viral strain with K-15E, P83S and Q293H polymorphisms in the HA, which is presumably more virulent, in these individuals. Despite that, these patients showed only mild symptoms of infection. Our findings complement the discovery of mild cases of infection with the A(H1N1)pdm09 virus with the K-15E, P83S and Q293H mutations in Brazil and oppose other studies that have linked these changes with increased disease severity. These results could be important for a better comprehension of the impact of the pandemic influenza in the context of BMT

    HIV-1 and Its gp120 Inhibits the Influenza A(H1N1)pdm09 Life Cycle in an IFITM3-Dependent Fashion

    No full text
    <div><p>HIV-1-infected patients co-infected with A(H1N1)pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1)pdm09 life cycle <i>in vitro</i>. We show here that exposure of A(H1N1)pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1)pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs) to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1)pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA) gene from <i>in vitro</i> experiments and from samples of HIV-1/A(H1N1)pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1)pdm09 co-infected patients during the recent influenza form 2009/2010.</p></div

    Commercially Available Flavonols Are Better SARS-CoV-2 Inhibitors than Isoflavone and Flavones

    No full text
    Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs. Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein), flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for COVID-19 treatment using cell-based assays and in silico calculations validated with experimental enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin decreased the 50% effective concentration (EC50) value due to their impact on the orientation of the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are both anti-inflammatory (decreasing TNF-&alpha; levels) and inhibit SARS-CoV-2 mainly by targeting the processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not only Mpro, but also the 3&prime;&ndash;5&prime; exonuclease (ExoN)

    Molecular analysis of A(H1N1)pdm09 HA gene.

    No full text
    <p>(<b>A</b>) After 2 h of A(H1N1)pdm09 infection (MOI  = 5), HeLa cells were exposed to culture medium or treatment with HIV-1 (10 ng/mL p24 Ag), gp120 (5 µg/mL) or IFN-γ (10 ng/mL). After 24 h of influenza infection, the supernatant was harvested, RNA was extracted, the HA gene of influenza was sequenced and presumptive amino acid residues analyzed. (<b>B</b>) Clinical samples from influenza A(H1N1)pdm09-infected patients co-infected or not with HIV-1 with onset of illness detected during July 18<sup>th</sup> to August 13<sup>th</sup>, 2009 at Southern Brazil and Rio de Janeiro had their RNA extracted, nucleotide were sequenced and putative amino acid sequences for HA analyzed. Trees are rooted by vaccinal strain A/California/07/2009. Circles indicate samples from co-infected individuals. Sequencing of HA was performed by the Sanger method and the phylogenetic tree of amino acids generated in the program Mega 5.2, with the Neighbor-joining algorithm and 2000 of bootstrap. The bootstrap probability is indicated for each interior branch. The scale bar indicates the number of amino acid changes per site.</p

    Dynamics of influenza infection in HIV-1-infected human primary macrophages.

    No full text
    <p>HIV-1-infected macrophages were infected with influenza for 1 (A), 3 (B), 6 (C) and 24 (D). Then, these cells were fixed with 4% paraformaldehyde and stained with anti-HIV-1 p24 (green), anti-influenza NP (red) and DNA probe DAPI (blue). Magnification 400 x.</p

    Dynamics of influenza infection in human primary macrophages.

    No full text
    <p>Macrophages were infected with influenza for 1 (A), 3 (B), 6 (C) and 24h (D). Then, these cells were fixed with 4% paraformaldehyde and stained with anti-influenza NP (red) and the DNA probe DAPI (blue). Magnification 400 x.</p
    corecore