915 research outputs found

    Does ursodeoxycholic acid change the proliferation of the colorectal mucosa? A randomized, placebo-controlled study

    Get PDF
    Background: In animal models ursodeoxycholic acid (UDCA) showed a chemoprotective effect against colon cancer. To explain this, a reduced proliferation of the colorectal mucosal proliferation was suggested. We, therefore, examined the influence of UDCA on the proliferation of normal colorectal mucosa in humans. Methods: Following endoscopic polypectomy, 20 patients with colorectal adenomas were randomized to receive either UDCA (750 mg/day, n = 10, group A) or placebo (n = 10, group B) for 6 months in a double-blinded way. Colorectal biopsies were sampled before and at the end of the medication by total colonoscopy. Colorectal mucosal proliferation was measured by FACScan analysis of propidium iodine labeling. Serum was sampled, and serum bile acids were analyzed by gas chromatography. Results: The proliferation rates at the end of the study were similar in both groups (median 15.4%; range 12.0-20.9 in group A; median 16.0%, 14.0-20.2 in group B, p = 0.41). Serum lithocholic acid levels at the end of the study were significantly higher in group A (1.3 mumol/l, 0.9-1.8) than in group B (0.7 mumol/l, 0-1.7, p < 0.02), whereas serum deoxycholic acid levels were similar in both groups. Conclusions: In this study, UDCA treatment for 6 months does not seem to induce changes in the proliferative behavior of the colorectal mucosa in patients with adenomas. It seems likely that a putative chemopreventive effect of UDCA in humans is not exerted by a reduction of the colorectal proliferation. Copyright (C) 2003 S. Karger AG, Basel

    Modeling lithium rich carbon stars in the Large Magellanic Cloud: an independent distance indicator ?

    Get PDF
    We present the first quantitative results explaining the presence in the Large Magellanic Cloud of some asymptotic giant branch stars that share the properties of lithium rich carbon stars. A self-consistent description of time-dependent mixing, overshooting, and nuclear burning was required. We identify a narrow range of masses and luminosities for this peculiar stars. Comparison of these models with the luminosities of the few Li-rich C stars in the Large Magellanic Cloud provides an independent distance indicator for the LMCComment: 7 pages, 2 figure

    Phase ordering and shape deformation of two-phase membranes

    Full text link
    Within a coupled-field Ginzburg-Landau model we study analytically phase separation and accompanying shape deformation on a two-phase elastic membrane in simple geometries such as cylinders, spheres and tori. Using an exact periodic domain wall solution we solve for the shape and phase ordering field, and estimate the degree of deformation of the membrane. The results are pertinent to a preferential phase separation in regions of differing curvature on a variety of vesicles.Comment: 4 pages, submitted to PR

    The Glassy Wormlike Chain

    Full text link
    We introduce a new model for the dynamics of a wormlike chain in an environment that gives rise to a rough free energy landscape, which we baptise the glassy wormlike chain. It is obtained from the common wormlike chain by an exponential stretching of the relaxation spectrum of its long-wavelength eigenmodes, controlled by a single stretching parameter. Predictions for pertinent observables such as the dynamic structure factor and the microrheological susceptibility exhibit the characteristics of soft glassy rheology and compare favourably with experimental data for reconstituted cytoskeletal networks and live cells. We speculate about the possible microscopic origin of the stretching, implications for the nonlinear rheology, and the potential physiological significance of our results.Comment: 12 pages, 8 figures. Minor correction

    The Angular Momentum Evolution of Very Low Mass Stars

    Get PDF
    We present theoretical models of the angular momentum evolution of very low mass stars (0.1 - 0.5 M_sun) and solar analogues (0.6 - 1.1 M_sun). We investigate the effect of rotation on the effective temperature and luminosity of these stars. We find that the decrease in T_eff and L can be significant at the higher end of our mass range, but becomes negligible below 0.4 M_sun. Formulae for relating T_eff to mass and v_rot are presented. We compare our models to rotational data from young open clusters of different ages to infer the rotational history of low mass stars, and the dependence of initial conditions and rotational evolution on mass. We find that the qualitative conclusions for stars below 0.6 M_sun do not depend on the assumptions about internal angular momentum transport, which makes these low mass stars ideal candidates for the study of the angular momentum loss law and distribution of initial conditions. We find that neither models with solid body nor differential rotation can simultaneously reproduce the observed stellar spin down in the 0.6 to 1.1 M_sun mass range and for stars between 0.1 and 0.6 M_sun. The most likely explanation is that the saturation threshold drops more steeply at low masses than would be predicted with a simple Rossby scaling. In young clusters there is a systematic increase in the mean rotation rate with decreased temperature below 3500 K (0.4 M_sun). This suggests either inefficient angular momentum loss or mass-dependent initial conditions for stars near the fully convective boundary. (abridged)Comment: To appear in the May 10, 2000 Ap

    Mass-luminosity relation for FGK main sequence stars: metallicity and age contributions

    Full text link
    The stellar mass-luminosity relation (MLR) is one of the most famous empirical "laws", discovered in the beginning of the 20th century. MLR is still used to estimate stellar masses for nearby stars, particularly for those that are not binary systems, hence the mass cannot be derived directly from the observations. It's well known that the MLR has a statistical dispersion which cannot be explained exclusively due to the observational errors in luminosity (or mass). It is an intrinsic dispersion caused by the differences in age and chemical composition from star to star. In this work we discuss the impact of age and metallicity on the MLR. Using the recent data on mass, luminosity, metallicity, and age for 26 FGK stars (all members of binary systems, with observational mass-errors <= 3%), including the Sun, we derive the MLR taking into account, separately, mass-luminosity, mass-luminosity-metallicity, and mass-luminosity-metallicity-age. Our results show that the inclusion of age and metallicity in the MLR, for FGK stars, improves the individual mass estimation by 5% to 15%.Comment: 7 pages, 4 figures, 1 table, accepted in Astrophysics and Space Scienc

    Orientational order on curved surfaces - the high temperature region

    Full text link
    We study orientational order, subject to thermal fluctuations, on a fixed curved surface. We derive, in particular, the average density of zeros of Gaussian distributed vector fields on a closed Riemannian manifold. Results are compared with the density of disclination charges obtained from a Coulomb gas model. Our model describes the disordered state of two dimensional objects with orientational degrees of freedom, such as vector ordering in Langmuir monolayers and lipid bilayers above the hexatic to fluid transition.Comment: final version, 13 Pages, 2 figures, uses iopart.cl

    Characterizing the pulsations of the ZZ Ceti star KUV 02464+3239

    Full text link
    We present the results on period search and modeling of the cool DAV star KUV 02464+3239. Our observations resolved the multiperiodic pulsational behaviour of the star. In agreement with its position near the red edge of the DAV instability strip, it shows large amplitude, long period pulsation modes, and has a strongly non-sinusoidal light curve. We determined 6 frequencies as normal modes and revealed remarkable short-term amplitude variations. A rigorous test was performed for the possible source of amplitude variation: beating of modes, effect of noise, unresolved frequencies or rotational triplets. Among the best-fit models resulting from a grid search, we selected 3 that gave l=1 solutions for the largest amplitude modes. These models had masses of 0.645, 0.650 and 0.680 M_Sun. The 3 `favoured' models have M_H between 2.5x10^-5 - 6.3x10^-6 M_* and give 14.2 - 14.8 mas seismological parallax. The 0.645 M_Sun (11400 K) model also matches the spectroscopic log g and T_eff within 1 sigma. We investigated the possibility of mode trapping and concluded that while it can explain high amplitude modes, it is not required.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    Shape Changes of Self-Assembled Actin Bilayer Composite Membranes

    Full text link
    We report the self-assembly of thin actin shells beneath the membranes of giant vesicles. Ion-carrier mediated influx of Mg2+ induces actin polymerization in the initially spherical vesicles. Buckling of the vesicles and the formation of blisters after thermally induced bilayer expansion is demonstrated. Bilayer flickering is dominated by tension generated by its coupling to the actin cortex. Quantitative flicker analysis suggests the bilayer and the actin cortex are separated by 0.4 \mum to 0.5 \mum due to undulation forces.Comment: pdf-file, has been accepted by PR
    • …
    corecore