37 research outputs found

    Suspended Liquid Subtractive Lithography: One-step generation of 3D channel geometries in viscous curable polymer matrices

    Get PDF
    The miniaturization of synthesis, analysis and screening experiments is an important step towards more environmentally friendly chemistry, statistically significant biology and fast and cost-effective medicinal assays. The facile generation of arbitrary 3D channel structures in polymers is pivotal to these techniques. Here we present a method for printing microchannels directly into viscous curable polymer matrices by injecting a surfactant into the uncured material via a steel capillary attached to a 3D printer. We demonstrate this technique using polydimethylsiloxane (PDMS) one of the most widely used polymers for the fabrication of, e. g. microfluidic chips. We show that this technique which we term Suspended Liquid Subtractive Lithography (SLSL) is well suited for printing actuators, T-junctions and complex three dimensional structures. The formation of truly arbitrary channels in 3D could revolutionize the fabrication of miniaturized chips and will find broad application in biology, chemistry and medicine

    Polysiloxane layers created by sol-gel and photochemistry: Ideal surfaces for rapid, low-cost and high-strength bonding of epoxy components to polydimethylsiloxane

    Get PDF
    In this article we introduce and compare three techniques for low-cost and rapid bonding of stereolithographically structured epoxy components to polydimethylsiloxane (PDMS). In short, we first create a polysiloxane layer on the epoxy surface via silane surface coupling and polymerization. Afterwards, the modified epoxy surface can be bonded to a PDMS component at room temperature using a handheld corona discharger, which is a commonly used low-cost technique for bonding two PDMS components. Using these methods bonds of desirable strength can be generated within half an hour. Depending on the epoxy resin, we found it necessary to modify the silanization procedure. Therefore, we provide a total of three different silanization techniques that allow bonding of a wide variety of stereolithographically structurable epoxy resins. The first technique is a UV-light induced silanization process which couples a silane that contains an epoxy-ring ((3-glycidoxypropyl)trimethoxysilane (GPTMS)). For surfaces that cannot be modified with this silane we use dimethoxydimethylsilane (DMDMS). This silane can either be coupled to the surface by a sol-gel process or UV-light induced polymerisation. The sol-gel process which is a heat induced surface modification technique results in high bond strengths. Because of the heat which triggers the sol-gel process, this technique is limited to epoxy polymers with high glass transition temperatures. For the majority of stereolithographically structured epoxy resins which typically have glass transition temperatures of around 60°C the light-induced bonding technique is preferable. For all three techniques we performed DIN EN-conform tensile testing demonstrating maximum bond strengths of up to 350 kPa which is comparable with bond strengths reported for PDMS-to-PDMS bonds. For all bond methods, long-term stability as well as hydrolytic stability was assessed

    FACT-MNG: tumor site specific web-based outcome instrument for meningioma patients

    Get PDF
    To formulate Functional Assessment of Cancer Therapy-Meningioma (FACT-MNG), a web-based tumor site-specific outcome instrument for assessing intracranial meningioma patients following surgical resection or stereotactic radiosurgery. We surveyed the relevant literature available on intracranial meningioma surgery and subsequent outcomes (38 papers), making note of which, if any, QOL/outcome instruments were utilized. None of the surgveyed papers included QOL assessment specific to tumor site. We subsequently developed questions that were relevant to the signs and symptoms that characterize each of 11 intracranial meningioma sites, and incorporated them into a modified combination of the Functional Assessment of Cancer Therapy-Brain (FACT-BR) and SF36 outcome instruments, thereby creating a new tumor site-specific outcome instrument, FACT-MNG. With outcomes analysis of surgical and radiosurgical treatments becoming more important, measures of the adequacy and success of treatment are needed. FACT-MNG represents a first effort to formalize such an instrument for meningioma patients. Questions specific to tumor site will allow surgeons to better assess specific quality of life issues not addressed in the past by more general questionnaires

    Molecular and structural architecture of polyQ aggregates in yeast

    No full text
    Huntington's disease is caused by the expansion of a polyglutamine (polyQ) tract in the N-terminal exon of huntingtin (HttEx1), but the cellular mechanisms leading to neurodegeneration remain poorly understood. Here we present in situ structural studies by cryoelectron tomography of an established yeast model system of polyQ toxicity. We find that expression of polyQ-expanded HttEx1 results in the formation of unstructured inclusion bodies and in some cases fibrillar aggregates. This contrasts with recent findings in mammalian cells, where polyQ inclusions were exclusively fibrillar. In yeast, polyQ toxicity correlates with alterations in mitochondrial and lipid droplet morphology, which do not arise from physical interactions with inclusions or fibrils. Quantitative proteomic analysis shows that polyQ aggregates sequester numerous cellular proteins and cause a major change in proteome composition, most significantly in proteins related to energy metabolism. Thus, our data point to a multifaceted toxic gain-of-function of polyQ aggregates, driven by sequestration of endogenous proteins and mitochondrial and lipid droplet dysfunction
    corecore