14 research outputs found

    Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy

    Get PDF
    We have employed a model system, inspired by SNARE proteins, to facilitate membrane fusion between Giant Unilamellar Vesicles (GUVs) and Large Unilamellar Vesicles (LUVs) under physiological conditions. In this system, two synthetic lipopeptide constructs comprising the coiled-coil heterodimer-forming peptides K4, (KIAALKE)4, or E4, (EIAALEK)4, a PEG spacer of variable length, and a cholesterol moiety to anchor the peptides into the liposome membrane replace the natural SNARE proteins. GUVs are functionalized with one of the lipopeptide constructs and the fusion process is triggered by adding LUVs bearing the complementary lipopeptide. Dual-colour time lapse fluorescence microscopy was used to visualize lipid- and content-mixing. Using conventional confocal microscopy, lipid mixing was observed on the lipid bilayer of individual GUVs. In addition to lipid-mixing, content-mixing assays showed a low efficiency due to clustering of K4-functionalized LUVs on the GUVs target membranes. We showed that, through the use of the non-ionic surfactant Tween 20, content-mixing between GUVs and LUVs could be improved, meaning this system has the potential to be employed for drug delivery in biological systems.Supramolecular & Biomaterials Chemistr

    Profiling of dynamics in protein–lipid–water systems: a time-resolved fluorescence study of a model membrane protein with the label BADAN at specific membrane depths

    Get PDF
    Profiles of lipid-water bilayer dynamics were determined from picosecond time-resolved fluorescence spectra of membrane-embedded BADAN-labeled M13 coat protein. For this purpose, the protein was labeled at seven key positions. This places the label at well-defined locations from the water phase to the center of the hydrophobic acyl chain region of a phospholipid model membrane, providing us with a nanoscale ruler to map membranes. Analysis of the time-resolved fluorescence spectroscopic data provides the characteristic time constant for the twisting motion of the BADAN label, which is sensitive to the local flexibility of the protein–lipid environment. In addition, we obtain information about the mobility of water molecules at the membrane–water interface. The results provide an unprecedented nanoscale profiling of the dynamics and distribution of water in membrane systems. This information gives clear evidence that the actual barrier of membranes for ions and aqueous solvents is located at the region of carbonyl groups of the acyl chains

    Phase Separation and Nanodomain Formation in Hybrid Polymer/Lipid Vesicles

    No full text
    Hybrid polymer/lipid large unilamellar vesicles (LUVS) were studied by small angle neutron scattering (SANS), time-resolved Forster resonance energy transfer (TR-FRET), and cryo-transmission electron microscopy (cryo-TEM). For the first time in hybrid vesicles, evidence for phase separation at the nanoscale was obtained, leading to the formation of stable nanodomains enriched either in lipid or polymer. This stability was allowed by using vesicle-forming copolymer with a membrane thickness dose to the lipid bilayer thickness, thereby minimizing the hydrophobic mismatch at the domain periphery. Hybrid giant unilamellar vesicles (GUVs) with the same composition have been previously shown to be unstable and susceptible to fission, suggesting a role of curvature in the stabilization of nanodomains in these structures.Cinétique de Translocation de Particules à travers de Bicouches Auto-Assemblée
    corecore