90 research outputs found
Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.
Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.We thank Kaori Yoshida, Keiko Uchiyama, Satomi Kawai, Naomi Hatanaka, Yoko Sawaguchi, Runa Washio,
Takako Ichihashi, Nanako Koike, Keiko Uchiyama, Masaaki Nameta (Niigata University), Kaori Igarashi, Kaori
Saitoh, Keiko Endo, Hiroko Maki, Ayano Ueno, Maki Ohishi, Sanae Yamanaka, Noriko Kagata (Keio University)
for their excellent technical assistance, C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School)
for providing the BAT cell line, Evan Rosen (Harvard Medical School) for providing us Ucp-Cre mice, Kosuke
Morikawa (Kyoto University), Tomitake Tsukihara (University of Hyogo) and Shinya Yoshikawa (University of
Hyogo) for their professional opinions and suggestions. Tis work was supported by a Grant-in-Aid for Scientifc Research (A) (20H00533) from MEXT, AMED under Grant Numbers JP20ek0210114, and AMED-CREST
under Grant Number JP20gm1110012, and Moonshot Research and Development Program (21zf0127003s0201),
MEXT Supported Program for the Strategic Research Foundation at Private Universities Japan, Private University
Research Branding Project, and Leading Initiative for Excellent Young Researchers, and grants from the Takeda
Medical Research Foundation, the Vehicle Racing Commemorative Foundation, Ono Medical Research Foundation, and the Suzuken Memorial Foundation (to T.M.). Support was also provided by a Grants-in-Aid for Young
Scientists (Start-up) (26893080), and grants from the Uehara Memorial Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, SENSHIN Medical Research Foundation, ONO Medical Research
Foundation, Tsukada Grant for Niigata University Medical Research, Te Nakajima Foundation, SUZUKEN
memorial foundation, HOKUTO Corporation, Mochida Memorial Foundation for Medical & Pharmaceutical
Research, Grants-in-Aid for Encouragement of Young Scientists (A) (16H06244), Daiichi Sankyo Foundation of
Life Science, AMED Project for Elucidating and Controlling Mechanisms of Aging and Longevity under Grant
Number JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002, JP21gm5010002, Astellas Foundation for Research on Metabolic Disorders, Research grant from Naito Foundation, Te Japan Geriatrics Society
(to I.S.); by a Grant-in-Aid for Scientifc Research (C) (19K08974), Yujin Memorial Grant, Sakakibara Memorial
Research Grant from Te Japan Research Promotion Society for Cardiovascular Diseases, TERUMO Life Science Foundation, Kanae Foundation (to Y.Y.), JST ERATO (JPMJER1902), AMED-CREST (JP20gm1010009),
the Takeda Science Foundation, the Food Science Institute Foundation (to S.F.), and by a grant from Bourbon
(to T.M., I.S. and Y.Y.).S
Collaborative Virtual Screening Identifies a 2-Aryl-4-aminoquinazoline Series with Efficacy in an In Vivo Model of Trypanosoma cruzi Infection
Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments
在宅療養中の終末期がん患者を看病する家族の心情と療養支援に関する質的研究
終末期がん患者を在宅で看病している5事例の面接内容の質的分析により,在宅療養継続に関わる要因である14のカテゴリーを抽出し,(1)療養継続に必要な家族の力:【絆】【愛情】【役割認識】(2)家族の抱える課題:【死が避けられない現実】(3)療養継続の決定に関わる要因であり,コア概念:【家が一番いい】(4)家族の課題,希望・意向を決定:【覚悟】(5)療養継続を困難にする要因:【不安感】【負担感】【不足感】【疲労感】【葛藤】(6)療養継続を維持する要因:【対処】【満足感】(7)家族が必要とする支援の課題:【安心が保証される支援】として分類した.これらを構造化し,家族の心情と在宅療養継続に関わる要因を明らかにした.療養者と家族は【家が一番いい】という思いを核としながらも,在宅療養継続の困難と維持の要因により,家族は揺らぎを生じさせており,そうした家族のもつ課題に対する【安心が保証できる支援】が,ひいては家族の力を強化すると考えた
- …